Table of contents

1. Device Description 5
 1.1 Security Advice ... 6
 1.2 Content of Delivery .. 6
 1.3 Description ... 6
 1.4 Installation .. 8
 1.4.1 Connection Example ... 9
 1.5 Technical Specifications .. 10
 1.6 Sensor ... 11

2. Operating 13
 2.1 Operating the device directly ... 14
 2.2 Control Panel .. 15
 2.3 Maintenance ... 16
 2.3.1 Maintenance Page ... 19
 2.3.2 Configuration Management ... 20
 2.3.3 Bootloader Activation .. 21

3. Configuration 24
 3.1 Output Ports .. 25
 3.1.1 Watchdog ... 26
 3.2 Input Ports .. 28
 3.3 Ethernet .. 29
 3.3.1 IP Address .. 29
 3.3.2 IP ACL .. 30
 3.3.3 HTTP .. 32
 3.4 Protocols .. 33
 3.4.1 Console ... 33
 3.4.2 Syslog ... 35
 3.4.3 SNMP .. 36
 3.4.4 Radius .. 37
 3.4.5 Modbus TCP ... 39
 3.4.6 MQTT .. 40
 3.5 Clock .. 41
 3.5.1 NTP .. 41
 3.5.2 Timer .. 42
 3.5.3 Timer Configuration .. 42
 3.6 Sensors ... 49
 3.6.1 Port Switching ... 50
 3.7 E-Mail .. 51
 3.8 Front Panel ... 52
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Specifications</td>
<td>53</td>
</tr>
<tr>
<td>4.1</td>
<td>Automated Access</td>
<td>54</td>
</tr>
<tr>
<td>4.2</td>
<td>Messages</td>
<td>54</td>
</tr>
<tr>
<td>4.3</td>
<td>IP ACL</td>
<td>56</td>
</tr>
<tr>
<td>4.4</td>
<td>IPv6</td>
<td>57</td>
</tr>
<tr>
<td>4.5</td>
<td>Radius</td>
<td>57</td>
</tr>
<tr>
<td>4.6</td>
<td>SNMP</td>
<td>58</td>
</tr>
<tr>
<td>4.6.1</td>
<td>Device MIB 2302</td>
<td>61</td>
</tr>
<tr>
<td>4.7</td>
<td>SSL</td>
<td>62</td>
</tr>
<tr>
<td>4.8</td>
<td>Console</td>
<td>63</td>
</tr>
<tr>
<td>4.8.1</td>
<td>SSH</td>
<td>68</td>
</tr>
<tr>
<td>4.8.2</td>
<td>Console Cmd 2302</td>
<td>69</td>
</tr>
<tr>
<td>4.9</td>
<td>Modbus TCP</td>
<td>78</td>
</tr>
<tr>
<td>4.9.1</td>
<td>Sensor Tables</td>
<td>84</td>
</tr>
<tr>
<td>4.10</td>
<td>MQTT</td>
<td>84</td>
</tr>
<tr>
<td>4.10.1</td>
<td>Example HiveMQ</td>
<td>87</td>
</tr>
<tr>
<td>5</td>
<td>Support</td>
<td>88</td>
</tr>
<tr>
<td>5.1</td>
<td>Data Security</td>
<td>89</td>
</tr>
<tr>
<td>5.2</td>
<td>HTTP Performance</td>
<td>89</td>
</tr>
<tr>
<td>5.3</td>
<td>Contact</td>
<td>90</td>
</tr>
<tr>
<td>5.4</td>
<td>Declaration of Conformity</td>
<td>90</td>
</tr>
<tr>
<td>5.5</td>
<td>FAQ</td>
<td>91</td>
</tr>
</tbody>
</table>

Index 93
1 Device Description

1.1 Security Advice

- The device may only be used for its intended purpose.
- The device must be mounted in a housing / control cabinet in the end application and must not be accessible during operation.
- The supply circuit requires an all-pole disconnecting device. The disconnecting device must at least meet the requirements of DIN VDE 100.
- Never work when voltage is applied.
- The device may only be installed and used by qualified personnel. The manufacturer accepts no liability for damage or injury caused by improper use of the device.
- It is not possible for the customer to repair the device. Repairs may only be carried out by the manufacturer.
- Connect the device to the mains or to a suitable low-voltage source. Under no circumstances may the device be supplied with power from the mains and the low-voltage source at the same time! (For details see technical data).
- The device may only be operated on the supply mains on a circuit with a fuse protection of max. 16 A.
- The power cables and plugs used must be in perfect condition.
- The device is only intended for use in dry and clean environments.
- The thermal specifications must be observed.
- Please also observe the safety instructions and operating instructions of the other devices that are connected to the device.
- The device is not a toy. It must not be stored or operated within the reach of children.
- Do not leave packaging material lying around carelessly. Plastic sheets/bags, Styrofoam parts, etc. could become a dangerous toy for children. Please recycle the packaging material.
- If you are not clear about the correct connection or if any questions arise that are not clarified by the operating instructions, please contact our support.

1.2 Content of Delivery

The package includes:

- Expert Net Control 2302
- Quick Start Guide

1.3 Description

The Expert Net Control 2302 can switch 4 different relay outputs and monitor 8 passive signal inputs. The device has the following features:

- 4 switchable, potential-free relay outputs (see technical data)
- Relays dispose of high contact reliability also at very small loads
- 8 passive inputs for monitoring NO and NC devices, e.g. door contacts, smoke detectors etc.
Device Description

- Stop input to switch-off of all relays
- Operation with AC or DC voltage (see technical data)
- Optional sensor for environmental monitoring (temperature, humidity and air pressure)
- Console commands via SSH, Telnet and serial interface
- SSH support with public key and passwords
- Individually parameterisable switch-on delay of all outputs
- Programmable timetables and turn-on/turn-off sequences
- Individually adjustable watchdog for each output, which switches depending on accessibility (network ping)
- Dual TCP/IP stack with IPv4 and IPv6 support (IPv6-ready)
- Control and monitoring of the device via Ethernet with an integrated web server with SSL encryption (TLS 1.1, 1.2, 1.3)
- Control and configuration with CGI parameters and JSON messages via HTTP (REST API)
- SNMP (v1, v2c and v3, traps)
- MQTT 3.1.1 Support
- Modbus TCP support
- Radius support
- Generation of messages (e-mail, syslog and SNMP traps) and switching of relays depending on sensor measurement limits
- Firmware update during operation via Ethernet possible
- Encrypted e-mails (SSL, STARTTLS)
- Access protection through IP access control
- Low own consumption
- Developed and produced in Germany
1.4 Installation

1. AC power supply
2. Four relay outputs (potential-free)
3. Ethernet connector (RJ45)
4. Sensor connector (RJ45)
5. Activity LED (Input) for digital inputs
6. 4 status LED for relay outputs
7. Status LED
8. Button for Select and OK
9. Alternative low power supply LV PWR (Low Voltage PoWeR)
10. Eight passive inputs (with GND (¶)) for 2 inputs each
11. Stop input (with GND (¶)) to switch-off of all relays

Start-up the device

- Connect the device to the mains or to a low-voltage source (see technical data). Under no circumstances may the device be supplied with the mains and plug-in power supply at the same time!
- Plug the network cable into the Ethernet socket (RJ45).
- Connect the relay to the loads that should be operated.
- Make contact between the lines to be monitored and the digital inputs. To close an input circuit there has to be a connection between a ground pin (¶) and the respective input pin has to be made.
• Connect the sensor (if any) to the device.

1.4.1 Connection Example

Here an example of a block diagram in which the device is supplied with 230V AC, and four AC loads (L1 - L4) are connected. In addition, the inputs are joined to eight switches (S1 - S8), and the stop input is connected to the push-button PB1.

As an alternative to connecting "In 1-8" and "GND", voltages can also be fed in between "In 1-8" and GND. The maximum input voltage is 24V, voltages below 3V are detected as LOW state, and voltages above 8V are detected as HI.
1.5 Technical Specifications

Connections
- 1 x Ethernet connection RJ45
- 1 x RJ45 for external sensor
- 1 x mains connection AC, AK700
- 1 x low voltage DC, AK700
- 8 x inputs I1 ... I8, AK700
- 1 x stop input, AK700
- 4 x relay switching contacts NO, AK700

Network connection
- 10baseT / 100baseTX Ethernet

Relay outputs
- 1 ... 4 max. 240V AC 16A, 50/60Hz
- 24V DC 10A

Inputs
- I1 ... I8
- Stop screw terminal, AK700 /..-5.0-V-GREEN
digital input, internal pull-up
active: max. 24V, 3V LOW, 8V HI
passive: switching contact

Power supply
- Internal power supply:
 - 100V to 240V AC -15% ... +10%, 50/60 Hz, max 0.25A
- Low voltage:
 - 12V to 24V AC -10% ... +10%, 50/60Hz, max 0.6A
 - 12V to 30V DC -5% ... +5%, max 0.6A
- Internal fuse protection: 1.75A Typical \(I_{2t}^{(A2s)} = 1.5 \)

Protection class
- Class II

Environment
- Ambient temperature: 0°C to 50°C
- Storage temperature: -20°C - 70°C
- Humidity: 0% - 95% (non-condensing)

Housing
- Black plastic

Dimensions
- 105mm x 70mm x 90mm (L x H x D)

Weight
- approx. 300g

⚠️ Under no circumstances may the device be supplied with power from the mains and the low-voltage source at the same time!

<table>
<thead>
<tr>
<th>AK700 /..-5.0-V-GREEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection technology</td>
</tr>
<tr>
<td>Solid conductor</td>
</tr>
<tr>
<td>Fine-stranded conductor (flexible)</td>
</tr>
<tr>
<td>Fine stranded conductor, wire end ferrule</td>
</tr>
<tr>
<td>Stripping length</td>
</tr>
<tr>
<td>Torque</td>
</tr>
<tr>
<td>Screw Size</td>
</tr>
</tbody>
</table>
1.6 Sensor

One external sensor can be connected to the Expert Net Control 2302. The following sensors are currently available:

<table>
<thead>
<tr>
<th>Product Name</th>
<th>7101</th>
<th>7104-1</th>
<th>7105-1</th>
<th>7106-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibrated Sensor</td>
<td>-</td>
<td>7104-2</td>
<td>7105-2</td>
<td>7106-2</td>
</tr>
<tr>
<td>Cable length</td>
<td>≥ 2m</td>
<td>≥ 2m</td>
<td>≥ 2m</td>
<td>≥ 2m</td>
</tr>
<tr>
<td>Connector</td>
<td>RJ45</td>
<td>RJ45</td>
<td>RJ45</td>
<td>RJ45</td>
</tr>
<tr>
<td>temperature range</td>
<td>-20°C to +80°C at ±2°C (maximum) and ±1°C (typical)</td>
<td>-20°C to +80°C at ±2°C (maximum) and ±1°C (typical)</td>
<td>-20°C to +80°C at ±2°C (maximum) and ±1°C (typical)</td>
<td>-20°C to +80°C at ±2°C (maximum) and ±1°C (typical)</td>
</tr>
<tr>
<td>air humidity range (non-condensing)</td>
<td>-</td>
<td>-</td>
<td>0-100%, ±3% (typical), 10-80% ±2% (typical)</td>
<td>0-100%, ±3% (typical), 10-80% ±2% (typical)</td>
</tr>
<tr>
<td>air pressure range (full)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>± 1 hPa (typical) at 300 ... 1100 hPa, 0 ... +40 °C</td>
</tr>
<tr>
<td>air pressure range (ext)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>± 1.7 hPa (typical) at 300 ... 1100 hPa, -20 ... 0 °C</td>
</tr>
<tr>
<td>Protection</td>
<td>IP68</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Device Description

7201, 7202

<table>
<thead>
<tr>
<th>Product Name</th>
<th>7201</th>
<th>7202</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable length</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connector</td>
<td>RJ45</td>
<td>RJ45</td>
</tr>
<tr>
<td>temperature range</td>
<td>-20°C to +80°C at ±2°C (maximum) and ±1°C (typical)</td>
<td>-20°C to +80°C at ±2°C (maximum) and ±1°C (typical)</td>
</tr>
<tr>
<td>air humidity range (non-condensing)</td>
<td>0-100%, ±3% (typical)</td>
<td></td>
</tr>
</tbody>
</table>

The sensors are detected automatically after connection. The sensor values are displayed directly on the "Control Panel" website:

<table>
<thead>
<tr>
<th>Id</th>
<th>Name</th>
<th>Temperature °C</th>
<th>Humidity %</th>
<th>Dew Point °C</th>
<th>Dew Diff °C</th>
<th>Pressure hPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: 7106</td>
<td>7206</td>
<td>22.8</td>
<td>34.2</td>
<td>5.8</td>
<td>16.6</td>
<td>1019.8</td>
</tr>
</tbody>
</table>

A click on the link in the "Name" column opens the display of the Min and Max values. The values in a column can be reset using the "Reset" button. The "Reset" button in the name column deletes all stored Min and Max values.
Operating
2 Operating

2.1 Operating the device directly

Port Switching

The current switching state of the output is indicated by the corresponding plain text displays (port LEDs). If the green "on" LED is lit, the port is switched on, if the red "off" LED is lit, the output port is switched off. The buttons "Select" and "Ok" are located on the device. If you press "select", you can select the following modes one after the other (in the front panel configuration you can deactivate the modes "All on" or "All off").

1. All on (PALL in the display): All LEDs flash green. If you press the "Ok" button for 2.5 seconds, all ports are switched on.
2. All off (PALL in the display): All LEDs flash red. If you hold the "Ok" button for 2.5 seconds, all ports are switched off.
3. If you press "Select" again, the LED for the first output starts flashing, i.e. the output is selected. Press "Select" again to select the next output. Pressing and holding the "Ok" button for one second will toggle the state of the selected output.

⚠️ If the ports are already "All on" or "All off", the corresponding mode is skipped.

Status-LED

The Status LED shows the different states of the device:

- red: The device is not connected to the Ethernet.
- orange: The device is connected to the Ethernet and waits for data from the DHCP server.
• green: The device is connected to the Ethernet and the TCP/IP settings are allocated.
• periodic blinking: The device is in Bootloader mode.

2.2 Control Panel

Access the web interface: http://"IP-address" and log-in.

The web page provides an overview of the switching state, as well as the external sensor, provided that it is connected. When a single port is clicked at the **Expert Net Control 2302**, a panel with buttons to control a single port appear:

The Port icon is green when the relay is closed, or red in the open state. An additional small clock icon indicates that a timer is active. Timer can be activated by delay, reset or batch mode.
Operating

An activated Watchdog is represented by an eye icon. An "X" means, that the address that should be observed, could not be resolved. Two circular arrows show a booting status.

The ports can be switched manually with the "On" and "Off" buttons. If the port is turned on, it can be turned off by pressing the "Reset" button, until after a delay it turns itself on again. The delay time is determined by the parameter Reset Duration, which is described in the chapter "Configuration - Output Ports". The "Close" button dissolves the panel again.

Batchmode

Each individual port can be set for a selectable period of time to the state "switch on" or "switch off". After the selected time they are automatically switched to the second preselected state.

Optionally the device can be switched via a Perl script or external tools like wget. More information is available on our support wiki at www.gude.info/wiki.

The website contains a status overview of all passive signal inputs, the time since the last change, and a counter of switching changes. The name and text for a logical state of each input can be configured in the chapter Configuration-Input Ports.

2.3 Maintenance

The actual device generation with IPv6 and SSL allows all maintenance functions in the web interface to be carried out on the Maintenance Page.
Maintenance in the web interface

The following functions are available from the maintenance web page:

- Firmware Update
- Change the SSL certificate
- Load and save the configuration
- Restart the device
- Factory Reset
- Jump into the Bootloader
- Delete the DNS cache

Upload Firmware, Certificate or Configuration

On the Maintenance Page, select the required file with "Browse .." in the sections "Firmware Update", "SSL Certificate Upload" or "Config Import File Upload" and press "Upload". The file is now transferred to the update area of the device and the contents are checked. Only now, pressing the "Apply" button will permanently update the data, or abort with "Cancel".

⚠️ Only one upload function can be initiated with a reboot, e.g. you cannot transmit firmware and configuration at the same time.

⚠️ If after a firmware update, the web page is not displayed correctly anymore, this may be related to the interaction of Javascript with an outdated browser cache. If a Ctrl-F5 does not help, it is recommended that you manually delete the cache in the browser options. Alternatively, you can test start the browser in "private mode".

⚠️ During a firmware update, old data formats are sometimes converted to new structures. If an older firmware is newly installed, the configuration data and the energy meters may be lost! If the device then does not run correctly, please restore the factory settings (e.g. from the Maintenance Page).

Actions in Bootloader mode

If the web interface of the device is no longer accessible, the device can be put into Bootloader mode (see chapter Bootloader activation). The following functions can be executed using the GBL_Conf.exe application:

- Set IPv4 address, net-mask and gateway
- Turn HTTP password on and off
- Turn IP-ACL on and off
- Factory Reset
- Allow jump from firmware to bootloader
- Restart the device

⚠️ For devices with relays, entering or exiting the bootloader mode does not change the state of the relays as long as the operating voltage is maintained.

The GBL_Conf.exe program is available free of charge on our website www.gude.info and can also be found on the enclosed CD-ROM.
To check the network settings with GBL_Conf.exe, start the program and choose "All Devices" in the "Search" menu. From the list select the appropriate device. The lower part of the left half of the window now shows the current network settings of the device. If the IP address is displayed with the default settings (192.168.0.2), either no DHCP server is present on the network, or there could be no free IP address assigned to it.

- Activate the Bootloader Mode (see Chapter Bootloader Mode) and choose in menu "Search" the item "Bootloader-Mode Devices only"
- Enter the desired settings in the edit window and save them with "Save Config".
- Deactivate the boot loader mode for the changes to take effect. Select again "All Devices" in the "Search" menu of GBL_Conf.exe.

The new network configuration is now displayed.

⚠ Changing the configuration with gbl_conf.exe is explicitly only allowed in bootloader mode!

Factory Reset

The device can be reset to the factory default via the web interface from the Maintenance Page[19] or from the Bootloader mode (see chapter Bootloader activation[17]). All TCP/IP settings are reset in this operation.

⚠ If a unit is set to factory defaults, an uploaded certificate or updated firmware will be preserved.
2.3.1 Maintenance Page

This section provides access to important functions such as Firmware Update or Restart Device. It is advisable to set an HTTP password for this reason.

- **Firmware Update**: Start a firmware update.
- **SSL Certificate Upload**: Saves your own SSL certificate. See chapter "SSL" for the generation of a certificate in the right format.
- **Config Import File Upload**: Loads a new configuration from a text file. To apply the new configuration, a "Restart Device" must be executed after the "Upload".
- **Config File Export**: Saves the current configuration in a text file.
 - Saving the configuration should only be carried out in an SSL connection, since it contains sensitive password information (even if it is encrypted or hashed).
- **Restart Device**: Restarts the device without changing the status of the relays.
 - Some functions such as a firmware update or changing of the IP-address and HTTP settings require a restart of the device. A jump to the boot loader or a restart of the device lead by no means to a change of the relay states.
 - **Restore Fab Settings and Restart Device**: Performs a restart and resets the device to factory default.
Enter Bootloader Mode: Jumps into bootloader mode, where additional settings can be made with GBL_Conf.exe.

Flush DNS Cache: All entries in the DNS cache are discarded and address resolutions are requested again.

Config/Status View: status.html: Displays the status.html page with the JSON data.

Config/Status Download: export.json: Direct file download of JSON data from status.html.

2.3.2 Configuration Management

The device configuration can be saved and restored in the maintenance area.

The "Config File Export" function can be used to save the current configuration as a text file. The syntax used in the configuration file corresponds to the commands of the Telnet console. If the configuration of a device is to be restored from a text file, load the file with "Upload" and restart the device with "Restart Device".

⚠️ Saving the configuration should only be carried out in an SSL connection, since it contains sensitive password information (even if it is encrypted or hashed). For the same reasons, it is advisable to carefully handle the generated configuration files when archiving.

Editing the configuration file

It is possible to customize a saved configuration file with a text editor for your own needs. For example, one scenario would be to use a script language to automate the creation of many customized versions of a configuration, then equip a large number of devices with an individualized configuration. Also Upload and restart with CGI commands can be done in scripting languages. With use of the comment sign "#" you can quickly hide single commands or add personal notes.

If you modify a configuration file manually, it is not always clear which limits are allowed for parameters. After uploading and restarting, commands with invalid parameters are ignored. Therefore, the generated configuration includes comments describing the boundaries of the parameters. Where "range:" refers to a numeric value, and "len:" to a text parameter. E.g:

```plaintext
e-mail auth set 0 #range: 0..2
email user set "" #len: 0..100
```

The command "system fabsettings" from the beginning of a generated configuration file brings the device into the factory state, and then executes the individual commands that
modify the configuration state. It may be desirable to make the changes relative to the current configuration, and not out of the factory state. Then the "system fabsettings" should be removed.

No output of default values

The configuration file contains (with exceptions) only values which differ from the default. The command "system fabsettings" (go to the factory state) from the beginning of a generated configuration file should not be removed, otherwise the device can get incompletely configured.

Configuration via Telnet

The configuration files can in principle also be transferred in a Telnet session, but then the settings are changed during operation, and not completely when restarting, as it would have been the case with an upload. It can happen that events are triggered at the same time as the device is configured. One should therefore:

a) disable the function
b) completely parametrize
c) reactivate the function

An example:

```plaintext
email enabled set 0
email sender set "" #len: 0..100
email recipient set "" #len: 0..100
email server set "" #len: 0..100
email port set 25
email security set 0 #range: 0..2
email auth set 0 #range: 0..2
email user set "" #len: 0..100
email passwd hash set "" #len: 0..100
email enabled set 1 #range: 0..1
```

2.3.3 Bootloader Activation

The configuration of the device from the application "GBL_Conf.exe" is only possible, if the device is in Bootloader Mode.

Activation of the Bootloader Mode

1) via push button:
 - Hold both buttons for 3 seconds
2) or
 - Remove the power supply
 - Hold down the "Select" button. If the push button is recessed, use a pin or paper clip
 - Connect the operating voltage
Operating

3) by Software:

- Start the "GBL_Conf.exe" program
- Do a network search with the "Search" menu action
- Activate in menu "Program Device" the item "Enter Bootloader"

⚠️ This function is only possible if "Enable FW to BL" was activated in the application "GBL_Conf.exe" before, while the device was already in the bootloader.

4) via web interface:

Press "Enter Bootloader Mode" on the maintenance web page.

Whether the device is in Bootloader mode, is indicated by the flashing of the status LED, or it is shown in "GBL_Conf.exe" application after a renewed device search (appendix "BOOT-LDR" after the device name). In Bootloader mode the program "GBL_Conf.exe" can disable the password and the IP ACL, perform a firmware update, and restore the factory settings.

⚠️ For devices with relays, entering or exiting the bootloader mode does not change the state of the relays as long as the operating voltage is maintained.

Abandonment of the Bootloader Mode

1) via push button:

- Hold both buttons for 3 seconds (only if the device has 2 buttons)

2) or

- Remove and connect the power supply without operating a button

3) by Software:

- Start the "GBL_Conf.exe" application
- Do a network search with the "Search" menu action
- In menu "Program Device" activate the item "Enter Firmware"

⚠️ For devices with relays, entering or exiting the bootloader mode does not change the state of the relays as long as the operating voltage is maintained.

Factory Reset

If the device is in bootloader mode, it can always be put back to its factory default. All TCP/IP settings are reset in this operation.

⚠️ If a unit is set to factory default, an uploaded certificate or updated firmware will be preserved.

1) via push button:

- Activate the Bootloader Mode of the device
Operating

- Hold down the button (or the "Select" button for devices with 2 buttons) for 6 seconds. If the push button is recessed, use a pin or paper clip.
- The status LED will blink in a fast rhythm, please wait until the LED blinks slowly (about 5 seconds)

2) by Software:

- Activate the Bootloader Mode of the device
- "Start the GBL_Conf.exe" program
- In menu "Program Device" activate the item "Reset to Fab Settings"
- The status LED will blink in a fast rhythm, please wait until the LED blinks slowly (about 5 seconds)
Configuration
3 Configuration

TCP/IP configuration by DHCP

After switching on the device is scanning on the Ethernet for a DHCP server and requests an unused IP address. Check the IP address that has been assigned and adjust if necessary, that the same IP address is used at each restart. To turn off DHCP use the software GBL_Conf.exe or use the configuration via the web interface.

To check the network settings with GBL_Conf.exe, start the program and choose "All Devices" in the "Search" menu. From the list select the appropriate device. The lower part of the left half of the window now shows the current network settings of the device. If the IP address is displayed with the default settings (192.168.0.2), either no DHCP server is present on the network, or there could be no free IP address assigned to it.

3.1 Output Ports

Choose Output Port to configure: This field is used to select the Output Ports to be configured.

Label: You can assign a name up to 15 characters for each of the Output Ports. Using the name, an identification of the the device connected to the port can be facilitated.

Start-up Monitoring

It is important, that if necessary the condition of the Output Ports can be restored after a power failure. Therefore each port can be configured with Initialization status to a specific start-up state. This start-up sequence can be carried out delayed by the parameter Initialization Delay. There is in any case a minimum one-second delay between switching of ports.

Initialization status (coldstart): This is the port state (on, off, remember last state) the port should be set when the device is turned on. The setting "remember last state" saves the last manually set state of the Output Port in the EEPROM.

Initialization delay: Here can be configured how long the port should wait to switch to its defined state after the device is turned on. The delay may last up to 8191 seconds. This
corresponds to a period of approx. two hours and 20 minutes. A value of zero means that the initialization is off.

Repower delay: When this feature is enabled (value greater than 0), the Output Port will switch itself on again a specified time after it has been disabled. Unlike the "Reset" button this function applies to all switch actions, including SNMP, or an optional serial interface.

Reset Duration: When the "Reset" button is triggered, the device turns the Output Port off, waits for the time entered here (in seconds) and turns the Output Port on.

3.1.1 Watchdog

The watchdog feature enables to monitor various remote devices. Therefore either ICMP pings or TCP pings are sent to the device to be monitored. If these pings are not answered within a certain time (both the time and the number of attempts can be set), the port is reset. This allows e.g. to automatically restart not responding server or NAS systems. The mode IP master-slave port allows you to switch a port depending on the availability of a remote device.

When a watchdog is activated it presents various information in the Control Panel. The information is color-coded.

- **Green text**: The watchdog is active and regularly receives ping replies.
- **Orange text**: The watchdog is currently enabled, and waits for the first Ping response.
- **Red text**: The watchdog is active and receives no ping replies anymore from the configured IP address.

After the watchdog has been enabled, the display remains orange until the watchdog receives a ping response for the first time. Only then the watchdog is activated. Even after triggering a watchdog and a subsequent power port reset, the display will remain orange until the device is rebooted and responds again to ping requests. This will prevent a premature watchdog reset of the port, e.g. when a server needs a long time for a file check.

You can monitor devices on your own network, as well as devices on an external network, e.g. the operating status of a router.
Enable watchdog: Enables the watchdog function for this Power Port.

Watchdog type: Here you can choose between the monitoring by ICMP pings or TCP pings.

- **ICMP Pings**: The classic ping (ICMP echo request). It can be used to check the accessibility of network devices (for example, a server).
- **TCP Pings**: With TCP pings, you can check if a TCP port on the target device would accept a TCP connect. Therefore a non-blocked TCP port should be selected. A good choice would be port 80 for http or port 25 for SMTP.

TCP port: Enter the TCP port to be monitored. When using ICMP pings this is not needed.

Hostname: The name or IP address of the monitored network device.

Ping interval: Select the frequency (in seconds) at which the ping packet is sent to each network device to check its operating status.

Ping retries: After this number of consecutive unanswered ping requests the device is considered inactive.

Watchdog mode: When **Reset port when host down** is enabled, the Power Port is turned off and switched back on after the time set in **Reset Duration**. In mode **Switch off once when host down** the Power Port remains disabled.

At the default setting (**Infinite wait for booting host after reset**) the watchdog monitors the connected device. When there is no longer a reply after a set time, the watchdog performs the specified action, usually a reset of the Power Port. Now the watchdog waits until the monitored device reports again on the network. This may take several minutes depending on the boot duration of the device. Only when the device is accessible from network again, the watchdog is re-armed. If the option **Repeat reset on booting host after x ping timeout** is enabled, this mechanism is bypassed. Now the watchdog is re-activated after N Ping intervals (input field **ping timeouts**).

When enabling the **IP master-slave mode**, the port is switched depending on the availability of a remote device. Depending on the configuration, the port is switched on when the terminal is reachable, or vice versa.

⚠️ The option **Repeat reset on booting host after x ping timeout** has the following pitfall: If a server, that is connected to the monitored Port is in need for a long boot process (e.g. it is doing a file system check), the server would probably exceed the tripping time of the watchdog. The server would be switched off and on again, and the file system check is restarted. This would be repeated endlessly.

count PING requests as unreplied when ethernet link down: If the Ethernet link of the device is not active, watchdog monitoring is not possible and the watchdog function is not activated. If this option is activated, a watchdog is also triggered if the Ethernet link is down.
3.2 Input Ports

Input: This field is used to select the input port to be configured.

Input Name: A name with a maximum of 15 characters can be assigned here for each of the input ports. The name can be used to facilitate identification of the device connected to the port.

Inverted Input: Inverts the assignment of the input signal to a logical HI / LOW status.

Input HI Text Message: Text display in the control panel and in messages when a HI signal is present at the input port.

Input LOW Text Message: Text display in the control panel and in messages when a LOW signal is present at the input port.

Enable value-threshold message trigger: Generates messages when the inputs change.

On input is HI: Switching action when input port changes from LOW to HI.

On input is LOW: Switching action when input port changes from HI to LOW.

Enable time interval message trigger: Generates console (Telnet/SSH) and MQTT messages within time intervals.

Enable value-delta message trigger: Generates console (Telnet/SSH) and MQTT messages when an input changes.

Message channels: Enables the generation of messages on different channels.
3.3 Ethernet

3.3.1 IP Address

Hostname: Here you can enter a name with up to 63 characters. This name will be used for registration on the DHCP server.

⚠ Special characters and umlauts can cause problems in the network.

IPv4 Address: The IP address of the device.

IPv4 Netmask: The network mask used in the network.

IPv4 Gateway address: The IP address of the gateway.

IPv4 DNS address: The IP address of the DNS server.

Use IPv4 DHCP: Select "yes" if the TCP/IP settings should be obtained directly from the DHCP server. When the function is selected, each time the device powers up it is checked if a DHCP server is available on the network.

⚠ If no DHCP server is available, the last IP address is used. However, the DHCP client tries to reach a DHCP server again every 5 minutes. The DHCP request lasts one minute until it is aborted. During this time the IP-address is not accessible! It is therefore essential to deactivate DHCP for a static IP addresses!

Use IPv6 Router Advertisement: The Router Advertisement communicates with the router
to make global IPv6 addresses available.

Use DHCP v6: Requests from an existing DHCPv6 server addresses of the configured DNS server.

Use manual IPv6 address settings: Activates the entry of manual IPv6 addresses.

IPv6 status: Displays the IPv6 addresses over which the device can be accessed, and additionally DNS and router addresses.

![IPv6 status](image)

⚠️ For IP changes a firmware reset is required. This can be done in the Maintenance web page. A restart of the device leads by no means to a change of the relay states.

Manual IPv6 Configuration

![IPv6 (manual)](image)

The input fields for the manual setting of IPv6 addresses allow you to configure the prefix of four additional IPv6 device addresses, and to set two DNS addresses, and a gateway.

3.3.2 IP ACL
Configuration

IP Address IP ACL HTTP Server

ICMP Ping

Reply ICMP ping requests: yes no

IP Access Control List

Enable IP filter: yes no
1. Grant IP access to host/net: 1234:4ef0:eec1:0:219:32ff:fe00:f124 - +
2. Grant IP access to host/net: 192.168.1.84 - +
3. Grant IP access to host/net: mypc.localdom - +
4. Grant IP access to host/net: 192.168.1.24 - +
5. Grant IP access to host/net: 1234:4ef0:eec1:0::64 - +

Apply

Reply ICMP ping requests: If you enable this feature, the device responds to ICMP pings from the network.

Enable IP filter: Enable or disable the IP filter here. The IP filter represents an access control for incoming IP packets.

⚠ Please note that when IP access control is enabled HTTP and SNMP only work if the appropriate servers and clients are registered in the IP access control list.

⚠ If you choose a wrong IP ACL setting and locked yourself out, please activate the Bootloader Mode and use GBL_Conf.exe to deactivate the IP ACL. Alternatively, you can reset the device to factory default.
3.3.3 HTTP

HTTP Server option: Selects whether access is possible only with HTTP, HTTPS, or both.

Server port HTTP: Here can be set the port number of the internal HTTP. Possible values are from 1 to 65534 (default: 80). If you do not use the default port, you must append the port number to the address with a colon to address the device from a web browser. Such as: "http://192.168.0.2:800".

Server port HTTPS: The port number to connect the web server via the SSL (TLS) protocol.

Supported TLS versions: Limits the supported TLS versions.

Enable Ajax autorefresh: If this is activated, the information of the status page is automatically updated via http request (AJAX).

⚠️ For some HTTP configuration changes a firmware reset is required. This can be done in the Maintenance web page. A restart of the device leads by no means to a change of the relay states.

Enable password protection: Password access protection can be activated. If the admin password is assigned, you can only log in by entering this password to change settings. Users can log in by entering the user password in order to query the status information and initiate switching operations.
Use radius server passwords: Username and password are validated by a Radius Sever.

Use locally stored passwords: Username and password are stored locally. In this case, an admin password and a user password must be assigned. The password can have a maximum of 31 characters. The name "admin" and "user" are provided for the user name in the password entry mask of the browser. In factory settings, the password for the admin is set to "admin" or "user" for the user password.

⚠️ If the password mask is redisplayed, only four "bullets" are shown as a symbolic placeholder, since for security reasons the device never stores the password itself, but only the SHA2-256 hash. If you want to change a password, the complete password must always be re-entered.

⚠️ If you have forgotten your password, please activate the bootloader mode and then turn off the password prompt in GBL_Conf.exe.

3.4 Protocols

3.4.1 Console

![TCP/IP Console](image)

Enable Telnet: ⬞ yes ⬞ no

Telnet TCP port: 23

Raw mode: ⬞ yes ⬞ no

Active negotiation: ⬞ yes ⬞ no

Activate echo: ⬞ yes ⬞ no

Push messages: ⬞ yes ⬞ no

Delay after 3 failed logins: ⬞ yes ⬞ no

Enable SSH: ⬞ yes ⬞ no

SSH TCP port: 22

Activate echo: ⬞ yes ⬞ no

Push messages: ⬞ yes ⬞ no

Require user login (Telnet/SSH): ⬞ yes ⬞ no

Use radius server passwords: ⬞ yes ⬞ no

Use locally stored passwords: ⬞ yes ⬞ no

Username: telnet

Set new password: **** (32 characters max)

Repeat password: ****

Upload new SSH public key:
Configuration

Telnet

Enable Telnet: Enables the Telnet console.

Telnet TCP port: Telnet sessions are accepted on this port.

Raw mode: The VT100 editing and the IAC protocol are disabled.

Active negotiation: The IAC negotiation is initiated by the server.

Activate echo: The Telnet echo setting if not changed by IAC.

Push messages: Sends push messages via SSH.

Delay after 3 failed logins: After 3 wrong entries of username or password, the next login attempt is delayed.

SSH

Enable SSH: Enables the SSH protocol.

SSH TCP port: Port on which SSH sessions are accepted.

Activate echo: The echo setting for SSH.

Push messages: Sends push messages via SSH.

SSH and Telnet

Require user login: Username and password are required.

Use radius server passwords: Username and password are validated by a Radius Sever.

Use locally stored passwords: Username and password are stored locally.

Upload SSH public key: Input field for public key.

Delete public key: Setting this at Apply deletes the public key.
Enable serial console: Enables the serial console.

Raw mode: The VT100 editing is disabled.

Activate echo: The echo setting.

Enable binary KVM protocol: Additionally activates the KVM protocol.

Enable UTF8 support: Enables character encoding in UTF8.

Push messages: Sends push messages via serial console.

Require user login: Username and password are required.

Delay after 3 failed logins: After 3 wrong entries of username or password, the next login attempt is delayed.

Use radius server passwords: Username and password are validated by a Radius Sever.

Use locally stored passwords: Username and password are stored locally.

3.4.2 Syslog

Enable Syslog: Enables the Syslog feature.

Syslog server: Specify the address of the Syslog server.
Enable Syslog: Enables the usage of Syslog Messages.

Syslog Server: If you have enabled Syslog Messages, enter the IP address of the server to which the syslog information should be transmitted.

3.4.3 SNMP

SNMP-get: Enables the acceptance of SNMP-GET commands.

SNMP-set: Allows the reception of SNMP-SET commands.

SNMP UDP Port: Sets the UDP port where SNMP messages are received.

sysContact: Value of RFC 1213 sysContact.

sysName: Value of RFC 1213 sysName.

sysLocation: Value of RFC 1213 sysLocation.
Enable SNMP v2: Activates SNMP v2.

⚠️ Because of security issues, it is advisable to use only SNMP v3, and to disable SNMP v2. Accesses to SNMP v2 are always insecure.

Community public: The community password for SNMP GET requests.

Community private: The community password for SNMP SET requests.

Enable SNMP v3: Activates SNMP v3.

SNMP v3 Username: The SNMP v3 User Name.

SNMP v3 Privacy Algorithm: SNMP v3 Encryption Algorithm.

⚠️ If the password mask is redisplayed, only four "bullets" are shown as a symbolic placeholder, since for security reasons the device never stores the password itself, but only the key formed using the Authorization Algorithm. If you want to change a password, the complete password must always be re-entered.

⚠️ The calculation of the password hashes varies with the selected algorithms. If the Authentication or Privacy algorithms are changed, the passwords must be re-entered in the configuration dialog. "SHA-384" and "SHA512" are calculated purely in software. If "SHA-512" is set on the configuration page, the time for the key generation may take once up to approx. 45 seconds.

Send SNMP traps: Here you can specify whether, and in what format the device should send SNMP traps.

SNMP trap receiver: You can insert here up to eight SNMP trap receiver.

MIB table: The download link to the text file with the MIB table for the device.

More information about SNMP settings are available from our support or can be found on the Internet at www.gude.info/wiki.

3.4.4 Radius
Enable Radius Client: Enables validation over Radius.

Use CHAP: Use CHAP password encoding.

Use Message Authentication: Adds the "Message Authentication" attribute to the Authentication Request.

Primary Server: Name or IP address of the Primary Radius server.

Shared secret: Radius Shared Secret. For compatibility reasons, only use ASCII characters.

Timeout: How long (in seconds) will be waited for a response from an Authentication Request.

Retries: How often an authentication request is repeated after a timeout.

Use Backup Server: Activates a Radius Backup server.

Backup Server: Name or IP address of the Radius Backup server.

Shared secret: Radius Shared Secret. For compatibility reasons, only use ASCII characters.

Timeout: How long (in seconds) will be waited for a response from an Authentication Request.

Retries: How often an authentication request is repeated after a timeout.
Test Username: Username input field for Radius test.

Test Password: Password input field for Radius test.

The "Test Radius Server" function allows you to check whether a combination of Username and Password is accepted by the configured Radius Servers.

3.4.5 Modbus TCP

Enable Modbus TCP: Enables Modbus TCP support.

Modbus TCP port: The TCP/IP port number for Modbus TCP.
3.4.6 MQTT

Enable MQTT: Enables MQTT support.

Broker: DNS or IP address of the MQTT broker.

TLS: Turns on TLS encryption.

Mode TCP port: The TCP/IP port number of the broker.

Username: The MQTT username.

Password: The password for the username.

Client ID: The MQTT client ID.

⚠️ The client IDs of a user must be different! If two clients of a user have the same
name, the connection of one client is normally terminated.

Quality of Service (QoS): Sets the QoS value (0 or 1) of the MQTT publishes.

Keep-alive ping interval: This defines the time interval in which the client sends an MQTT
ping.

Topic prefix: Defines the beginning of the topic with which all messages are sent. The
strings [mac] and [host] symbolize the MAC address or the hostname of the device.

Permit CLI commands: Enables the execution of console commands.

Publish device data summary interval: Time interval in which messages with the global
status of the device are sent.
Configuration

MQTT Logs

- MQTT client connected
- MQTT client id: 'client_1643' username: 'spc-user'
- MQTT broker connected
- MQTT broker DNS resolved
- MQTT broker DNS not yet resolved
- MQTT resolving host 'f5c05b76127c4b439e81c18b11bd66ab.s1.eu.hivemq.cloud' TCP port 8883

MQTT Broker Status

- Broker DNS ready, connected since 71 seconds
- Last publish 11 seconds ago

MQTT Logs: Outputs individual log messages about the connection setup.

MQTT Broker Status: Time information about connection duration, the last publish and the last keep-alive.

3.5 Clock

3.5.1 NTP

NTP

Enable Time Synchronization: ☐ yes ☐ no
Primary NTP server: 0.pool.ntp.org
Backup NTP server: 1.pool.ntp.org

Timezone:

- Timezone: (GMT+01:00) Berlin, Paris, Central
- Daylight Saving Time (DST): ☐ yes ☐ no

Clock

- Set clock: set manually set to Browsetime

Enable Time Synchronization: Enables the NTP protocol.

Primary NTP server: IP address of the first NTP server.

Backup NTP server: IP address of the second NTP server. Used when the first NTP server does not respond.

Timezone: The set time zone for the local time.
Daylight Saving Time: If enabled, the local time is converted to Central European Summer Time.

set manually: The user can set a time manually.

set to Browsertime: Sets the time corresponding to web browser.

⚠️ If Time synchronization is enabled, a manual time will be overwritten at the next NTP synchronization.

3.5.2 Timer

Enable Timer: Enables or disables all timers globally.

Syslog verbosity level: Sets the verbosity level for timer syslog output.

New Rule simple Timer: Shows a dialog for a simple timer rule.

New Rule advanced Timer: Brings up the dialog for advanced timer settings.

3.5.3 Timer Configuration

In the timer configuration you have three options: Create a simple timer, add a complex timer, or change an existing configuration.

⚠️ Timer rules are only executed if the device has a valid time. See configuration NTP.

⚠️ This instruction chapter applies to all Gude devices. For devices without switchable ports you can only create a complex timer. For an action there is only the register "Action CLI" available, and not the register "Action PortSwitch".
Creating a simple timer

If you activate "New Rule: simple Timer" the following dialog is displayed:

You set here which port should be switched for which time period, and on which days of the week the rule is active. In this example the period 9:00 to 17:00 is changed to 9:30 to 11:00 compared to the default input mask. Also, this rule should not be applied on Saturday and Sunday. The rule we have now says that every day, except Saturday and Sunday, port 1 will be switched on at 9:30 and switched off after 1.5 hours. Clicking on "Save" saves this rule.

We have now created 2 rules, one for when the port is turned on and the second for when it is turned off.

Creating a complex timer
If you create a complex timer or change an existing timer, you will always see an extended dialog. Here, ports can be switched as well as other actions can be executed via CLI commands. The setting of the switching times is more granular.

You can see here the extended representation of the first rule of the simple timer from the previous example. The action is started every day of every month at 9:30. The weekdays Saturday and Sunday are excluded. An existing rule can be removed with the "Delete" button.

⚠️ If a rule is deleted, the following rules move up. The numbering of the following rules also changes by one. This also applies to the index in the console commands.

A simple timer is directly "enabled", for a newly created complex timer "enable trigger" must be switched on manually. You can set a probability and a jitter for the timer rules. This makes random events possible. In this example the rule is executed with 100% probability. A jitter of 0 means that the action takes place exactly at the programmed time. Ports are switched as action mode, alternatively a console command (CLI Cmd) can be executed.

⚠️ After changes to existing timers, the "Rule Name" may no longer be meaningful. To keep the overview, it may be useful to adjust the name.
The switching function can be set in more detail on the "Action PortSwitch" register. Port 1 is switched on. You could extend the rule and switch more ports on or off. Additionally you can set a time for a batchmode in the field after "Between Action1 and Action 2 : wait", which starts "Action 2" after expired time. However, the batch mode has the disadvantage that it is not automatically restarted when the device is rebooted. Also, the port is locked against manual operation on the web page as long as the batch mode is running.

⚠️ The "Action PortSwitch" function is only available for devices with switchable ports.

Extending a rule

For demonstration purposes, here is an extension to the simple timer from the previous example:

The action is now started not only at 9:30, but also at 17:30. There are other changes: The timer is only active between October and December, also the action does not take place on the first day of a month.

⚠️ Since all fields in the mask are always considered, it is not possible to define the times 9:30 and 17:10 in a single timer rule. You need a second rule for this. If you set the hours 9 and 17, as well as the minutes 10 and 30, then the four times 9:10, 9:30,
17:10 and 17:30 would be programmed.

To change a field in this input mask without changing the state of the other fields, the Ctrl key must be pressed during the mouse click.

For this rule, on the "Options" tab, the time period is limited to the range between 5.10.2021 and 5.4.2022. In this example, the timer rule is only executed with a probability (Random Trigger Probability) of 90%.

In this example, port 1 and port 5 are enabled and disabled after 90 minutes by batch mode.

A popup on the mouse pointer shows the port number of the field.

Console Commands
Instead of switching a port, one or more console commands can be executed. These commands are entered in the "Action CLI" register. The "Action CLI" tab can only be selected if the option "Perform CLI Cmd" is activated in "Options".

Example Switching a Port on a Date

If you want to switch on a timer on a certain date at a certain time and switch it off at a later time, you cannot do it directly with a simple timer. Therefore it can be useful to create the timer as a simple timer first, and then customize it in the advanced dialog.

Switch port 3 on every day at 9:25, and off again at 17:30. You save.
Then call up the two timer rules you created ("On" and "Off") and enter the date on which the switching operation is to take place in the "Options" tab.

Example blind control

![Timer configuration interface](image)

You can use the jitter e.g. for a shutter control. In the classic example of a shutter control, you do not always want to raise and lower the shutters at the same time in order to confuse potential burglars. The jitter of 1800 seconds means that the action is executed randomly in a period between 30 minutes before and 30 minutes after the programmed time. The probability (Random Trigger Probability) of execution here is 100%.
3.6 Sensors

Sensor: Selects a sensor type to configure it. The first digit "1:" indicates the number of the sensor port (only important for devices with more than one sensor port). This is followed by the sensor name, and the adjustable sensor name.

Sensor Name: Changeable name for this sensor. For example, you can give the temperature and humidity a different name, even if they belong to the same sensor.

Select Sensor Field: Selects a data channel from a sensor.

Enable value-threshold message trigger: Enables monitoring of sensor threshold values.

Maximum/Minimum value: Adjustable threshold values at which messages should be sent via console (Telnet/SSH), SNMP trap, Syslog, MQTT or e-mail.

Hysteresis: Defines the distance that must be exceeded after a limit value of an external sensor has been exceeded in order to signal that the limit value has fallen below.

When above/below Min/Max value Switch Port: Switches a port depending on the exceeding or falling below of a limit value.

Enable time interval message trigger: Generates console (Telnet/SSH) and MQTT messages within time intervals.
Enable value-delta message trigger: Generates console (Telnet/SSH) and MQTT messages when a sensor value deviates by a delta value.

Message channels: Enables the generation of messages on different channels.

Min/Max measurement period: Selects the time range for the sensor min/max values on the overview web page.

Hysteresis Example:

A Hysteresis value prevents that too much messages are generated, when a sensor value is jittering around a sensor limit. The following example shows the behavior for a temperature sensor and a hysteresis value of "1". An upper limit of "50 °C" is set.

Example:

49.9 °C - is below the upper limit
50.0 °C - a message is generated for reaching the upper limit
50.1 °C - is above the upper limit
...

49.1 °C - is below the upper limit, but in the hysteresis range
49.0 °C - is below the upper limit, but in the hysteresis range
48.9 °C - a message is generated for underrunning the upper limit inclusive hysteresis range
...

3.6.1 Port Switching

Depending on the measured Current and the measured sensor values, switching actions can be triggered. During operation, the actions configured for crossing the limits are executed. For example, when a value moves from the range "above max value" inside the range "below max value", the action defined for "below max value" is performed. In the case of device start, configuration or plug-in of the sensor, the actions corresponding to the range in which the current temperature is located are switched.

Example with "Maximum value" of 65 °C, "Minimum value" of 25 °C and hysteresis of 3 °C. The dotted line shows the hysteresis.

![Hysteresis Diagram]

Actions during configuration, device start or plugging in the sensor (for given example):

<table>
<thead>
<tr>
<th>actual temperature during configuration</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>70 °C</td>
<td>Port 1 Off (above max) + Port 2 On (above min)</td>
</tr>
<tr>
<td>45 °C</td>
<td>Port 1 On (below max) + Port 2 On (above min)</td>
</tr>
</tbody>
</table>
Configuration

20 °C | Port 1 On (below max) + Port 2 Off (below min)

Action matrix during operation when limit values are exceeded (for given example):

<table>
<thead>
<tr>
<th></th>
<th>to "above max"</th>
<th>to "below max"</th>
<th>to "above min"</th>
<th>to "below min"</th>
</tr>
</thead>
<tbody>
<tr>
<td>from "above max"</td>
<td>-</td>
<td>P1 On</td>
<td>P1 On</td>
<td>P1 On + P2 Off</td>
</tr>
<tr>
<td>from "below max"</td>
<td>P1 Off</td>
<td>-</td>
<td>-</td>
<td>P2 Off</td>
</tr>
<tr>
<td>from "above min"</td>
<td>P1 Off</td>
<td>-</td>
<td>-</td>
<td>P2 Off</td>
</tr>
<tr>
<td>from "below min"</td>
<td>P1 Off + P2 On</td>
<td>P2 On</td>
<td>P2 On</td>
<td>-</td>
</tr>
</tbody>
</table>

⚠️ Only the switching operations for which actions have been defined, are triggered. If no "On" or "Off" action is defined for a port, the port can never reach this state by exceeding sensor values. Unless it is the initial state.

3.7 E-Mail

Enable E-Mail: Activates the E-Mail dispatch of messages.

Sender address: The E-Mail address of the sender.

Recipient address: The E-Mail address of the recipient. Additional E-Mail addresses, separated by comma, can be specified. The input limit is 100 characters.

SMTP Server: The SMTP IP-address of the E-Mail server. Either as FQDN, e.g: "mail.gmx.net", or as IP-address, e.g: "213.165.64.20". If required, attach a designated port, e.g: "mail.gmx.net:25".

SMTP server port: The port address of the E-Mail server. In the normal case this should be the same as the default, that is determined by the setting SMTP Connection Security.
Configuration

SMTP Connection Security: Transmission via SSL or no encryption.

SMTP Authentication (password): Authentication method of the E-Mail Server.

Username: User name that is registered with the SMTP E-Mail server.

Set new password: Enter the password for the login to the E-Mail server.

Repeat password: Enter the password again to confirm it.

⚠️ If the password mask is redisplayed, only four "bullets" are shown as a symbolic placeholder, since for security reasons the password is never shown itself. If you want to change a password, the complete password must always be re-entered.

E-Mail Logs: Logging of E-Mail system messages.

3.8 Front Panel

![Front Panel](image)

Button Lock: Disables the front buttons (activates the key lock) with the exception of the bootloader activation.

Allow switching all ports: Allows to switch all ports on or off with the front panel buttons.
Specifications
4 Specifications

4.1 Automated Access

The device can be accessed automatically via four different interfaces, which offer different possibilities to access the configuration data and status information. Only http and the console (telnet and serial) provide full access to the device.

⚠️ This chapter is general for all Gude devices. Depending on the device model are ports, certain sensors or other features not available.

List of different access options:

<table>
<thead>
<tr>
<th>Interface</th>
<th>Scope of Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTTP</td>
<td>read / write status of Power Ports (relays or eFuses) read / write all configuration data read / write all status information (full access to the device)</td>
</tr>
<tr>
<td>Console</td>
<td>read / write status of Power Ports (relays or eFuses) read / write all configuration data read / write all status information (full access to the device)</td>
</tr>
<tr>
<td>SNMP</td>
<td>read / write status of Power Ports (relays or eFuses) read / write names of Power Ports (relays or eFuses) read / write status of Port start configuration read / write status Buzzer read / write configuration of power sources (EPC 8291) read / write fan configuration (EPC 8291) read measurement values of external sensors read measurement values of all energy sensors read NTP time and status resetting the energy meters read the status of Overvoltage Protection</td>
</tr>
<tr>
<td>Modbus TCP</td>
<td>read / write status of Power Ports (relays or eFuses) read status of Inputs read / write configuration of power sources (EPC 8291) read / write fan configuration (EPC 8291) read measurement values of external sensors read measurement values of all energy sensors read the status of Overvoltage Protection</td>
</tr>
<tr>
<td>MQTT</td>
<td>Execute console commands</td>
</tr>
</tbody>
</table>

The device can be controlled via HTTP interface with CGI commands and returns the internal configuration and status in JSON format. The structure of the CGI commands and the JSON data is explained in more detail in our Wiki article: http://wiki.gude.info/EPC_HTTP_Interface

4.2 Messages

Depending on adjustable events, various messages can be sent from the device. The fol-
Specifications

The following message types are supported:

- Sending of e-mails
- SNMP Traps
- Syslog messages

E-Mail messages

Email messages are triggered by the following events:

- Switching of the Ports
- Exceeding of the max / min values of attached sensors
- State change of digital sensor input ports

SNMP Traps

SNMP Traps are system messages that are sent via the SNMP protocol to different recipients. SNMP traps are triggered by the following events:

- Switching of the Ports
- Exceeding of the max / min values of attached sensors
- State change of digital sensor input ports

Syslog messages

Syslog messages are simple text messages that are sent via UDP to a syslog server. Under Linux, normally a syslog daemon is already running (e.g., syslog-ng), for Microsoft Windows systems some freeware programs are available on the market. The syslog messages are sent for the following events:

- Turning on the device
- Enable/disable of syslog in the configuration
- Switching of the Ports
- Exceeding of the max / min values of attached sensors
- State change of digital sensor input ports

Table

<table>
<thead>
<tr>
<th>Event</th>
<th>SNMP Trap</th>
<th>Console</th>
<th>MQTT</th>
<th>Syslog</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device started</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Switch port</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Port watchdog status</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Syslog switched on/off</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>MQTT connection established</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>MQTT connection lost</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Stop-Input triggered</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Value-Threshold</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>external sensors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signal inputs</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Time-Interval</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>external sensors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signal inputs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Value-Delta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>external sensors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Specifications

SNMP traps

There are common traps for state changes of the same device resource. For example, a SwitchEvtPort trap is sent when a port is turned on or off. The state change itself is conveyed by the supplied data within the trap.

MQTT published data

Messages on the MQTT channel are sent in JSON format.

Example switch a port: "{"type": "portswitch", "idx": 2, "port": "2", "state": 1, "cause": {"id": 2, "txt": "http"}, "ts": 1632}"

Console Push Messages

Push messages can be activated on the console channels (Telnet, SSH or serial console), which output sensor values at timed intervals (every n seconds) or as of a configurable change in the magnitude of the sensor value on that channel. The generated message always starts with a "#" and ends with a CR/LF.

Example: Switch a port: "#port 2 ON"

If you open a telnet or SSH connection, the push messages are either preconfigured, or you switch on the push messages temporarily with "console telnet pushmsgs set 1" (or "console ssh pushmsgs set 1"). From now on, push messages will be sent asynchronously on this channel. The asynchronous nature of the messages can cause problems on a connection if you send commands yourself at the same time. There are then the possibilities:

- Filter all incoming characters between "#" and CR/LF
- or open a second channel (Telnet, SSH, serial) and switch on the push messages there.

4.3 IP ACL

IP Access Control List

The IP Access Control List (ACL IP) is a filter for incoming IP packets. If the filter is active, only the hosts and subnets whose IP addresses are registered in the list, can contact via HTTP or SNMP, and make changes. For incoming connections from unauthorized PCs, the device is not completely transparent. Due to technical restraints, a TCP/IP connection will be accepted at first, but then rejected directly.

Examples:

<table>
<thead>
<tr>
<th>Entry in the IP ACL</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.0.123</td>
<td>the PC with IP Address "192.168.0.123" can access the device</td>
</tr>
</tbody>
</table>
Specifications

<table>
<thead>
<tr>
<th>Entry in the IP ACL</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.0.1/24</td>
<td>all devices of subnet "192.168.0.1/24" can access the device</td>
</tr>
<tr>
<td>1234:4ef0:eec1:0::/64</td>
<td>all devices of subnet "1234:4ef0:eec1:0::/64" can access the device</td>
</tr>
</tbody>
</table>

⚠️ If you choose a wrong IP ACL setting and locked yourself out, please activate the Bootloader Mode and use GBL_Conf.exe to deactivate the IP ACL. Alternatively, you can reset the device to factory default.

4.4 IPv6

IPv6 Addresses

IPv6 addresses are 128 bit long and thus four times as long as IPv4 addresses. The first 64 bit form a so-called prefix, the last 64 bit designate a unique interface identifier. The prefix is composed of a routing prefix and a subnet ID. An IPv6 network interface can be reached under several IP addresses. Usually this is the case under a global address and the link local address.

Address Notation

IPv6 addresses are noted in 8 hexadecimal blocks at 16 bit, while IPv4 normally is noted in decimal. The separator is a colon, not a period.

E.g.: 1234:4ef0:0:0019:32ff:fe00:0124

Leading zeros may be omitted within a block. The previous example can be rewritten as:

1234:4ef0:0:0:19:32ff:fe00:124

One may omit one or more successive blocks, if they consist of zeros. This may be done only once within an IPv6 address!

1234:4ef0::19:32ff:fe00:124

One may use the usual decimal notation of IPv4 for the last 4 bytes:

1234:4ef0::19:32ff:254.0.1.36

4.5 Radius

The passwords for HTTP, telnet, and serial console (depending on the model) can be stored locally and / or authenticated via RADIUS. The RADIUS configuration supports a primary server and a backup server. If the primary server does respond, the RADIUS request is sent to the backup server. If the local password and RADIUS are enabled at the same time, the system is first checking locally, and then in the event of a failure the
RADIUS servers are contacted.

RADIUS attributes

The following RADIUS attributes are evaluated by the client:

Session-Timeout: This attribute specifies (in seconds) how long an accepted RADIUS request is valid. After this time has elapsed, the RADIUS server must be prompted again. If this attribute is not returned, the default timeout entry from the configuration is used instead. Please set this value to 300 seconds or greater to prevent the radius requests from becoming too large.

Filter-Id: If the value "admin" is set for this attribute, then admin rights are assigned for the login, otherwise only user access.

Service-Type: This is an alternative to Filter-Id. A service type of "6" or "7" means admin rights for the HTTP login, otherwise only limited user access.

HTTP Login

The HTTP login takes place via Basic Authentication. This means that it is the responsibility of the web server, how long the login credentials are temporarily stored there. The RADIUS parameter "Session-Timeout" therefore does not determine when the user has to login again, but at what intervals the RADIUS servers are asked again.

4.6 SNMP

SNMP can be used for status information via UDP (port 161). Supported SNMP commands are:

- GET
- GETNEXT
- GETBULK
- SET

To query via SNMP you need a Network Management System, such as HP OpenView, OpenNMS, Nagios etc., or the simple command line tools of NET-SNMP software. The device supports SNMP protocols v1, v2c and v3. If traps are enabled in the configuration, the device messages are sent as notifications (traps). SNMP Informs are not supported. SNMP Requests are answered with the same version with which they were sent. The version of the sent traps can be set in the configuration.

MIB Tables

The values that can be requested or changed by the device, the so-called "Managed Objects", are described in Management Information Bases (MIBs). These substructures are subordinate to so-called "OID" (Object Identifiers). An OID digit signifies the location of a value inside a MIB structure. Alternatively, each OID can be referred to with its symbol name (subtree name). The device's MIB table can be displayed as a text file by clicking on the link "MIB table" on the SNMP configuration page in the browser.

SNMP v1 and v2c
Specifications

SNMP v1 and v2c authenticates the network requests by so-called communities. The SNMP request has to send along the so-called community public for queries (read access) and the community private for status changes (write access). The SNMP communities are read and write passwords. In SNMP v1 and v2 the communities are transmitted unencrypted on the network and can be easily intercepted with IP sniffers within this collision domain. To enforce limited access we recommend the use of DMZ or IP-ACL.

SNMP v3

Because the device has no multiuser management, only one user (default name "standard") is detected in SNMP v3. From the User-based Security Model (USM) MIB variables, there is a support of "usmStats ..." counter. The "usmUser ..." variables will be added with the enhancement of additional users in later firmware versions. The system has only one context. The system accepts the context "normal" or an empty context.

Authentication

The algorithms "HMAC-MD5-96" and "HMAC-SHA-96" are available for authentication. In addition, the "HMAC-SHA-2" variants (RFC7630) "SHA-256", "SHA-384" and "SHA-512" are implemented.

"SHA-384" and "SHA512" are calculated purely in software. If "SHA-384" or "SHA-512" is set on the configuration page, the time for the key generation may take once up to approx. 45 seconds.

Encryption

The methods "DES", "3DES", "AES-128", "AES-192" and "AES-256" are supported in combination with "HMAC-MD5-96" and "HMAC-SHA-96." For the "HMAC-SHA-2" protocols, there is currently neither RFC nor draft that will allow for cooperation with an encryption.

While in the settings "AES-192" and "AES256" the key calculation is based on "draft-blumenthalphoto-aes-usm-04", the methods "AES 192-3DESKey" and "AES 256-3DESKey" utilize a key generation, which is also used in the "3DES" configuration ("draft-reeder-snmpv3-usm-3desede-00"). If one is not an SNMP expert, it is recommended to try in each case the settings with and without "...- 3DESKey".

Passwords

The passwords for authentication and encryption are stored only as computed hashes for security reasons. Thus it is, if at all, very difficult to infer the initial password. However, the hash calculation changes with the set algorithms. If the authentication or privacy algorithms are changed, the passwords must be re-entered in the configuration dialog.

Security

The following aspects should be considered:

- If encryption or authentication is used, then SNMP v1 and v2c should be turned off. Otherwise the device could be accessed with it.
- If only authentication is used, then the new "HMAC-SHA-2" methods are superior to...
Specifications

the MD5 or SHA-1 hashing algorithms. Since only SHA-256 is accelerated in hardware, and SHA-384 and SHA-512 are calculated purely in software, one should normally select SHA-256. From a cryptographic point of view, the security of SHA-256 is sufficient for today's usage.

- For SHA-1, there are a little less attack scenarios than MD5. If in doubt, SHA-1 is preferable.
- Encryption "DES" is considered very unsafe, use only in an emergency for reasons of compatibility!
- For cryptologists it's a debatable point whether "HMAC-MD5-96" and "HMAC-SHA-96" can muster enough entropy for key lengths of "AES-192" or "AES-256".
- From the foregoing considerations, we would recommended at present "HMAC-SHA-96" with "AES-128" as authentication and encryption method.

Change in Trap Design

In older MIB tables, a separate trap was defined for each combination of an event and a port number. This results in longer lists of trap definitions for the devices. For example, from epc8221SwitchEvtPort1 to epc8221SwitchEvtPort12. Since new firmware versions can generate many more different events, this behavior quickly produces several hundred trap definitions. To limit this overabundance of trap definitions, the trap design has been changed to create only one specific trap for each event type. The port or sensor number is now available in the trap as an index OID within the variable bindings.

In order to recognize this change directly, the "Notification" area in the MIB table has been moved from sysObjectID.0 to sysObjectID.3. This way, unidentified events are generated until the new MIB table is imported. For compatibility reasons, SNMP v1 traps are created in the same way as before.

NET-SNMP

NET-SNMP provides a very widespread collection of SNMP command-line tools (snmpget, snmpset, snmpwalk etc.) NET-SNMP is among others available for Linux and Windows. After installing NET-SNMP you should create the device-specific MIB of the device in NET-SMP share directory, e.g. after

c:\usr\share\snmp\mibs

or

/usr/share/snmp/mibs

So later you can use the 'subtree names' instead of OIDs:

Name: snmpwalk -v2c -mALL -c public 192.168.1.232 gudeads
OID: snmpwalk -v2c -mALL -c public 192.168.1.232 1.3.6.1.4.1.28507

NET-SNMP Examples

These examples refer to Gude devices that have switchable ports.

Query Power Port 1 switching state:

snmpget -v2c -mALL -c public 192.168.1.232 epc822XPportState.1
Switch on Power Port 1:

```bash
snmpset -v2c -mALL -c private 192.168.1.232 epc822XPortState.1 integer 1
```

4.6.1 Device MIB 2302

Below is a table of all device-specific OID's which can be accessed via SNMP. In the numerical representation of the OID the prefix " 1.3.6.1.4.1.28507 " (Gude Enterprise OID) was omitted at each entry in the table to preserve space. The example for a complete OID would be "1.3.6.1.4.1.28507.70.1.1.1.1". A distinction is made in SNMP OID's in between tables and scalars. OID scalar have the extension ".0" and only specify a value. In SNMP tables the "x" is replaced by an index (1 or greater) to address a value from the table.

<table>
<thead>
<tr>
<th>Name</th>
<th>OID</th>
<th>Type</th>
<th>Acc.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enc2302TrapCtrl</td>
<td>.70.1.1.1.1.0</td>
<td>Integer32</td>
<td>RW</td>
<td>0 = off 1 = Ver. 1 2 = Ver. 2c 3 = Ver. 3</td>
</tr>
<tr>
<td>enc2302TrapIPIndex</td>
<td>.70.1.1.2.1.1.x</td>
<td>Integer32</td>
<td>RO</td>
<td>A unique value, greater than zero, for each receiver slot.</td>
</tr>
<tr>
<td>enc2302TrapAddr</td>
<td>.70.1.1.2.1.2.x</td>
<td>OCTETS</td>
<td>RW</td>
<td>DNS name or IP address specifying one Trap receiver slot. A port can optionally be specified: 'name:port' An empty string disables this slot.</td>
</tr>
<tr>
<td>enc2302portNumber</td>
<td>.70.1.3.1.1.0</td>
<td>Integer32</td>
<td>RO</td>
<td>The number of Relay Ports</td>
</tr>
<tr>
<td>enc2302PortIndex</td>
<td>.70.1.3.1.2.1.1.x</td>
<td>Integer32</td>
<td>RO</td>
<td>A unique value, greater than zero, for each Relay Port.</td>
</tr>
<tr>
<td>enc2302PortName</td>
<td>.70.1.3.1.2.1.2.x</td>
<td>OCTETS</td>
<td>RW</td>
<td>A textual string containing name of a Relay Port.</td>
</tr>
<tr>
<td>enc2302PortState</td>
<td>.70.1.3.1.2.1.3.x</td>
<td>OCTETS</td>
<td>RW</td>
<td>current state a Relay Port</td>
</tr>
<tr>
<td>enc2302PortSwitchCount</td>
<td>.70.1.3.1.2.1.4.x</td>
<td>Integer32</td>
<td>RO</td>
<td>The total number of switch actions occurred on a Relay Port. Does not count sw tich commands w hich wil lnot sw itch the relay state, so just real relay switches are displayed here.</td>
</tr>
<tr>
<td>enc2302PortStartupMode</td>
<td>.70.1.3.1.2.1.5.x</td>
<td>INTEGER</td>
<td>RW</td>
<td>set Mode of startup sequence (off, on , remember last state)</td>
</tr>
<tr>
<td>enc2302PortStartupDelay</td>
<td>.70.1.3.1.2.1.6.x</td>
<td>Integer32</td>
<td>RO</td>
<td>Delay in sec for startup action</td>
</tr>
<tr>
<td>enc2302PortRepowerTime</td>
<td>.70.1.3.1.2.1.7.x</td>
<td>Integer32</td>
<td>RW</td>
<td>Delay in sec for repower port after switching off</td>
</tr>
<tr>
<td>epc2302PortResetDuration</td>
<td>.70.1.3.1.2.1.8.x</td>
<td>Integer32</td>
<td>RW</td>
<td>Delay in sec for turning Port on again after Reset action</td>
</tr>
<tr>
<td>enc2302ActiveInputs</td>
<td>.70.1.5.6.1.0</td>
<td>Unsigned32</td>
<td>RO</td>
<td>Number of supported Input Channels.</td>
</tr>
<tr>
<td>enc2302InputIndex</td>
<td>.70.1.5.6.2.1.1.x</td>
<td>Integer32</td>
<td>RO</td>
<td>None</td>
</tr>
<tr>
<td>enc2302Input</td>
<td>.70.1.5.6.2.1.2.x</td>
<td>OCTETS</td>
<td>RO</td>
<td>Input state of device</td>
</tr>
<tr>
<td>enc2302InputName</td>
<td>.70.1.5.6.2.1.32.x</td>
<td>OCTETS</td>
<td>RW</td>
<td>A textual string containing name of the Input</td>
</tr>
<tr>
<td>enc2302StopPressed</td>
<td>.70.1.5.12.0</td>
<td>OCTETS</td>
<td>RO</td>
<td>signals if Stop action active</td>
</tr>
<tr>
<td>epc2302NTPTimeValid</td>
<td>.70.1.5.15.1.0</td>
<td>INTEGER</td>
<td>RO</td>
<td>Show if valid Time is received</td>
</tr>
<tr>
<td>epc2302NTPUnixTime</td>
<td>.70.1.5.15.2.0</td>
<td>Unsigned32</td>
<td>RO</td>
<td>show received NTP time as unixtime (secs since 1 January 1970)</td>
</tr>
<tr>
<td>epc2302NTPLastValidTimestamp</td>
<td>.70.1.5.15.3.0</td>
<td>Unsigned32</td>
<td>RO</td>
<td>show seconds since last valid NTP timestamp received</td>
</tr>
</tbody>
</table>
Specifications

<table>
<thead>
<tr>
<th>Enc2302SensorIndex</th>
<th>None</th>
<th>.70.1.6.1.1.x</th>
<th>Integer32</th>
<th>RO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enc2302TempSensor</td>
<td></td>
<td>.70.1.6.1.2.x</td>
<td>Integer32</td>
<td>RO</td>
</tr>
<tr>
<td>Enc2302HygroSensor</td>
<td>actual humidity</td>
<td>.70.1.6.1.3.x</td>
<td>Integer32</td>
<td>RO</td>
</tr>
<tr>
<td>Enc2302InputSensor</td>
<td>logical state of input sensor</td>
<td>.70.1.6.1.4.x</td>
<td>Integer32</td>
<td>RO</td>
</tr>
<tr>
<td>Enc2302AirPressure</td>
<td>actual air pressure</td>
<td>.70.1.6.1.5.x</td>
<td>Integer32</td>
<td>RO</td>
</tr>
<tr>
<td>Enc2302DewPoint</td>
<td></td>
<td>.70.1.6.1.6.x</td>
<td>Integer32</td>
<td>RO</td>
</tr>
<tr>
<td>Enc2302DewPointDiff</td>
<td>difference between dew point and actual temperature (Temp - Dew Point)</td>
<td>.70.1.6.1.7.x</td>
<td>Integer32</td>
<td>RO</td>
</tr>
<tr>
<td>Enc2302ExtSensorName</td>
<td>A textual string containing name of an external Sensor</td>
<td>.70.1.6.1.32.x</td>
<td>OCTETS</td>
<td>RW</td>
</tr>
</tbody>
</table>

4.7 SSL

TLS Standard

The device is compatible with TLS v1.1 to TLS v1.3 standards, but due to lack of security, SSL v3.0, TLS 1.0, and RC4, MD5, SHA1, and DES encryption are disabled. All ciphers use Diffie-Hellman key exchange (Perfect Forward Secrecy).

Creating your own Certificates

The SSL stack is supplied with a specially newly generated self-signed certificate. There is no function to generate the local certificate anew at the touch of a button, since the required random numbers in an embedded device are usually not independent enough. However, you can create new certificates and import them to the device. The server accepts RSA (2048/4096) and ECC (Elliptic Curve Cryptography) certificates.

Usually OpenSSL is used to create an SSL certificate. For Windows for example, there is the light version of Shining Light Productions. There you open a command prompt, change to the directory “C:\OpenSSL-Win32\bin” and set these environment variables:

```sh
set openssl_conf=C:\OpenSSL-Win32\bin\openssl.cfg
set RANDFILE=C:\OpenSSL-Win32\bin\.rnd
```

Here are some examples for the generation with OpenSSL:

Creation of a self-signed RSA 2048-bit certificate

```bash
openssl genrsa -out server.key 2048
openssl req -new -x509 -days 365 -key server.key -out server.crt
```

RSA 2048-bit certificate with Sign Request:

```bash
openssl genrsa -out server.key 2048
openssl req -new -key server.key -out server.csr
openssl req -x509 -days 365 -key server.key -in server.csr -out server.crt
```
Specifications

The server keys should be created with "openssl genrsa". The Gude device processes keys in the traditional PKCS#1 format. This can be recognized by the fact that the generated key file starts with "-----BEGIN RSA PRIVATE KEY-----". If the file starts with "-----BEGIN PRIVATE KEY-----", the file is in PKCS#8 format and the key is not recognized. If you have only a key in PKCS#8 format, you can convert it to PKCS#1 with openssl: "openssl rsa -in pkcs8.key -out pkcs1.key".

ECC Certificate with Sign Request:

openssl ecparam -genkey -name prime256v1 -out server.key
openssl req -new -key server.key -out server.csr
openssl req -x509 -days 365 -key server.key -in server.csr -out server.crt

If you have created your key and certificate, both files are concatenated to one file:

Linux:
cat server.crt server.key > server.pem

Windows:
copy server.crt + server.key server.pem

The created server.pem can only be uploaded in the maintenance section of the device.

If several certificates (Intermediate CRT's) should also be uploaded to the device, one should make sure, that firstly the server certificate and secondly the Intermediates are assembled, e.g:
cat server.crt IM1.crt IM2.crt server.key > server.pem

An uploaded certificate will be preserved, when a device is put back to factory defaults.

Performance Considerations

If RSA 4096 certificates are used, the first access to the web server can take 8-10 seconds, because the math unit of the embedded CPU is highly demanded. After that, the parameters are in the SSL session cache, so all other requests are just as fast as with other certificate lengths. For a quick response even on the first access, we recommend RSA 2048-bit certificates that offer adequate security, too.

4.8 Console

For the configuration and control of the device, there is a set of commands with parameters that can be entered through a console. The console is available via SSH or Telnet, or for devices with RS232 port through using a serial terminal. It is not necessary to use Telnet, in Raw Mode a simple TCP/IP connection is sufficient to send commands. The communication can also be performed automated (e.g. via scripting languages). The
Specifications

console features are configured through the web interface.

Login

A ssh / telnet log in can be configured with password or without:

Command Set

There are several command levels. The following commands are usable from each level:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>back</td>
<td>go back one level</td>
</tr>
<tr>
<td>help</td>
<td>all commands of the actual level</td>
</tr>
<tr>
<td>help all</td>
<td>show all commands</td>
</tr>
<tr>
<td>logout</td>
<td>logout (only when login required)</td>
</tr>
<tr>
<td>quit</td>
<td>quit console</td>
</tr>
</tbody>
</table>

The "help" command returns all the commands of the current level. If "help" is called from the top level, e.g. the line "http [subtopics]" appears. This means that there is another level for "http". With the command "http help" all commands below "http" are shown. Alternatively, with entering "http" you can select the http level, and "help" shows all the commands on the selected level. The command "back" again selects the top level. It is possible to use "help" at any position: "http passwd help" provides all commands that have the prefix "http passwd".

You will find a complete list of all possible device commands in the chapter "Cmd Overview".

Parameter

If parameters are expected for the command, the parameter may be passed as numeric or constant. If e.g. you get the following line as help:

```
http server set {http_both=0|https_only=1|http_only=2}
```

the following instruction pairs are equivalent:

```
http server set https_only
http server set 1
```
or
http server set https_both
http server set 0

Numerical parameters can be entered with different bases. Here is an example of the decimal value 11:

<table>
<thead>
<tr>
<th>Base</th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>decimal (10)</td>
<td>11</td>
</tr>
<tr>
<td>hexadecimal (16)</td>
<td>0xb</td>
</tr>
<tr>
<td>octal (8)</td>
<td>013</td>
</tr>
<tr>
<td>binary (2)</td>
<td>0b1011</td>
</tr>
</tbody>
</table>

Bit Field Parameter

Some parameters can take several values at the same time. In the following example, all values between 0 and 5 can be set. In the help, this can be recognized by the fact that the values are not separated by the "|" character, but by commas.

"{EVT_SYSLOG=0,EVT_SNMP=1,EVT_EMAIL=2,EVT_SMS=3,EVT_GSMEMAIL=4,EVT_BEEPER=5}"

To set EVT_SYSLOG and EVT_EMAIL in a command, you can use the following syntax:

>extsensor 1 2 0 events type set "EVT_SYSLOG,EVT_EMAIL"
OK.

or numeric

>extsensor 1 2 0 events type set "0,2"
OK.

Additionally you can set all values with "ALLSET" or encode any bit pattern as hexadecimal with a syntax like "#7f1a".

Return Values

If a command is unknown or a parameter is incorrect, the output "ERR." is given at the beginning of the line, followed by a description of the fault. Successful instructions without special return value will be acknowledged by "OK.". All other return values are output within a single line. There are of two exceptions:

1. Some configuration changes, that affect TCP / IP and UDP, need a restart to be applied. These parameters are output on two lines. In the first line the current value is shown, on the second row the value after a restart. In the "Cmd Overview" table this is marked with "Note 2".
2. Other configurations (such as the assigned IPv6 addresses) have several values that can change dynamically. This is marked with "Note 3" in the "Cmd Overview" table.

Numerical Returns

For parameters that support constants, these constants are output as return values. To better deal with scripting languages, it may be easier to work only with numerical re-
turns. The command "vt100 numeric set ON" enables that only numerical values appear.

Comments

If you use a tool to send an entire file of commands via Telnet, it is helpful, if you can place comments in there. Beginning with the comment character "#", the remaining contents of a line is ignored.

Telnet

If the configuration "Raw Mode" is turned off, it is tried to negotiate the Telnet configuration between client and server using IAC commands. If this fails, the editing functions are not active, and the "Activate echo" option determines whether the characters sent to the Telnet server will be returned. Normally the client begins with the IAC negotiation. If this is not the case with the client, the device configuration "Active negotiation" should be turned on.

Raw Mode

If you want to use the console only automated, it may be advantageous to set the configuration "Raw mode" to "yes" and "Activate echo" to "no" to. Then there is no interfering interaction with the editor functions and the is no need to filter the sent characters to process the return values.

⚠️ If in the console "Raw mode" is activated but not in the used Telnet client, the IAC commands sent at the beginning can appear as interfering characters in the command line (partially invisible).

Editing

The following edit functions are available when the terminal supports VT100, and Raw Mode is deactivated. Entered characters are inserted at the cursor position.

<table>
<thead>
<tr>
<th>Keys</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left, Right</td>
<td>moves cursor left or right</td>
</tr>
<tr>
<td>Pos1, End</td>
<td>moves cursor to the beginning or end of line</td>
</tr>
<tr>
<td>Del</td>
<td>deletes character under the cursor</td>
</tr>
<tr>
<td>Backspace</td>
<td>deletes character left of cursor</td>
</tr>
<tr>
<td>Up, Down</td>
<td>shows input lines history</td>
</tr>
<tr>
<td>Tab, Ctrl-Tab</td>
<td>completes the word at cursor</td>
</tr>
<tr>
<td>Ctrl-C</td>
<td>clears the line</td>
</tr>
</tbody>
</table>

⚠️ This chapter is general for all Gude devices. Depending on the device type, ports or certain sensors may not be available.

Sensor Examples
Specifications

a) External Sensors

>extsensor all show
E=1,L="7106",0="21.3°C",1="35.1%",3="1013hPa",4="5.2°C",5="16.0°C"
E=2,L="7102",0="21.2°C",1="35.4%",4="5.3°C",5="15.9°C"

The command lists one connected external sensor per line, and the individual measured
values are separated by commas after the label name. The digit before the equal sign
 corresponds to the Index field in the External Sensor Table.

>extsensor 1 0 value show
Displays temperature of the sensor at Port 1

b) Line Sensors

>linesensor all "0,1,2,3,12" show
L=1,L="Power Port",0="13000Wh",1="0W",2="225V",3="0A",12="998218s"
L=2,L="Power Port",0="13000Wh",1="0W",2="223V",3="0A",12="996199s"

This command outputs all line sensor values in one line. A list of all fields (according
to the energy sensor table) is transferred as parameter. In this example these are the fields
Absolute Active Energy (0), Power Active (1), Voltage (2), Current (3) and Reset Time
(12).

>linesensor 1 "0,1,2,3,12" show
>linesensor 1 1 show

These variants give the sensor values of the field list or of a sensor at Line-In 1.

⚠️ For devices with Overvoltage Protection, the "linesensor all" command also outputs
the state of the protection ("OVP=x"). A "1" means ok, a "0" a failure of the protection.

c) Port Sensors

>portsensor all "0,1,2,3,12" show
P=1,L="Power Port",0="13000Wh",1="0W",2="225V",3="0A",12="998218s"
P=2,L="Power Port",0="13000Wh",1="0W",2="223V",3="0A",12="996199s"
...
P=12,L="Power Port",0="13000Wh",1="0W",2="225V",3="0A",12="998218s"

This command outputs all port sensor values in one line. A list of all fields (according
to the energy sensor table) is passed as parameter. In this example these are the fields
Absolute Active Energy (0), Power Active (1), Voltage (2), Current (3) and Reset Time
(12).

>portsensor 2 "0,1,2,3,12" show
>portsensor 2 1 show

These variants give the sensor values of the field list or a sensor to at Outlet Port 2.

⚠️ The following examples refer to Gude devices that have switchable ports.

d) Displaying Port Relays
Specifications

The command "port all state {MODE0=0|MODE1=1|MODE2=2} show" returns the switching state of all relays in 3 possible formats.

e) Switching Port Relays

The command syntax "port all state set "{port_list}" {OFF=0|ON=1}" sets a list of ports to ON=1 or OFF=0.

4.8.1 SSH

The device supports SSH-2 connections with either public key authentication or user name and password. The "login" must be enabled for SSH. Users and passwords can be stored locally or retrieved via a radius server. If you want to use SSH in a terminal, Activate echo should be enabled.

Public Keys

The following public keys are accepted:

<table>
<thead>
<tr>
<th>Key type</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSA</td>
<td>2048, 4096</td>
</tr>
<tr>
<td>ECDSA</td>
<td>256, 384</td>
</tr>
</tbody>
</table>

Generation with PuTTYgen

Key

Public key for pasting into OpenSSH authorized_keys file:

```
ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABgQC3f2GkA92B1eZ8wpApcq19a3-1hzw
4LSMlYx9rDgQ1b7kUn16smzG0vBx6kmWWhnx2Krl1GqhrVzryqAUp
36VfdJLCTAvtZ57f9WRxQdZouug2Z6ix7J0FBmuNGBLQdFPv9KnE,ym3P3oSw8rU0
pcu4U3F9nuJqTarZ2xQx4jHdvFruQ0ByaeeR3yV/jjv/dv46uXaa274p60U4FhvO/b
AnBV5wi3ErRIWwEAUx3e7aMlkhb7x2qGaxK2x0EZ32r/xT73bLV7yF0R0ufjtg
```


Key comment: rsa-key-20201011

Key passphrase:

Confirm passphrase:

Actions

Generate a public/private key pair

Load on existing private key file

Save the generated key

© 2023 GUDE Systems GmbH
Generated keys can be copied directly from e.g. PuTTYgen,

![Generated keys](image)

and inserted into the Configuration - Console input field. Public keys are accepted in SSH2 or OpenSSH format.

Generation with ssh-keygen

The tool ssh-keygen is mostly shipped with Linux and Windows to generate SSH keys. Here is an example to generate an ECDSA 384 key.

```
ssh-keygen -t ecdsa -b 384 -f ssh.key
```

In the file ssh.pub is then the private key, the content of ssh.key.pub is inserted into the field "Upload SSH public key:"

![Generated keys](image)

4.8.2 Console Cmd 2302

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>logout</td>
<td>go to login prompt when enabled</td>
<td>2</td>
</tr>
<tr>
<td>quit</td>
<td>quits telnet session - nothing in serial console</td>
<td>2</td>
</tr>
<tr>
<td>back</td>
<td>back one cmd level</td>
<td>2</td>
</tr>
<tr>
<td>help</td>
<td>show all cmds from this level</td>
<td>2</td>
</tr>
<tr>
<td>help all</td>
<td>show all cmds</td>
<td>2</td>
</tr>
<tr>
<td>clock</td>
<td>enters cmd group "clock"</td>
<td></td>
</tr>
<tr>
<td>clock ntp enabled set</td>
<td>enables ntp</td>
<td></td>
</tr>
<tr>
<td>clock ntp enabled show</td>
<td>shows if ntp enabled</td>
<td></td>
</tr>
<tr>
<td>clock timezone set</td>
<td>sets timezone</td>
<td></td>
</tr>
<tr>
<td>clock timezone show</td>
<td>shows timezone</td>
<td></td>
</tr>
<tr>
<td>clock dst enabled set</td>
<td>enables dst</td>
<td></td>
</tr>
<tr>
<td>clock dst enabled show</td>
<td>shows if dst is enabled</td>
<td></td>
</tr>
<tr>
<td>clock manual set</td>
<td>sets time and date manually</td>
<td></td>
</tr>
<tr>
<td>clock show</td>
<td>shows actual time and date</td>
<td></td>
</tr>
<tr>
<td>clock ntp server set</td>
<td>sets ntp server name</td>
<td></td>
</tr>
<tr>
<td>clock ntp server show</td>
<td>shows ntp server name</td>
<td></td>
</tr>
<tr>
<td>console</td>
<td>enters cmd group "console"</td>
<td></td>
</tr>
<tr>
<td>console version</td>
<td>shows unique console version number</td>
<td></td>
</tr>
<tr>
<td>console telnet enabled set</td>
<td>enables telnet on/off</td>
<td></td>
</tr>
<tr>
<td>console telnet enabled show</td>
<td>shows if telnet enabled</td>
<td></td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td><code>console telnet port set {ip_port}</code></td>
<td>sets telnet port</td>
<td></td>
</tr>
<tr>
<td><code>console telnet port show</code></td>
<td>shows telnet port</td>
<td></td>
</tr>
<tr>
<td>`console telnet raw set {OFF=0</td>
<td>ON=1}`</td>
<td>sets raw mode (disables editing) on/off</td>
</tr>
<tr>
<td><code>console telnet raw show</code></td>
<td>shows if raw mode enabled</td>
<td></td>
</tr>
<tr>
<td>`console telnet echo set {OFF=0</td>
<td>ON=1}`</td>
<td>enables echo on/off</td>
</tr>
<tr>
<td><code>console telnet echo show</code></td>
<td>shows if echo enabled</td>
<td></td>
</tr>
<tr>
<td>`console telnet activeneg set {OFF=0</td>
<td>ON=1}`</td>
<td>enables telnet active negotiation (IAC) on/off</td>
</tr>
<tr>
<td><code>console telnet activeneg show</code></td>
<td>shows if active negotiation enabled</td>
<td></td>
</tr>
<tr>
<td>`console telnet login set {OFF=0</td>
<td>ON=1}`</td>
<td>enables login on/off</td>
</tr>
<tr>
<td><code>console telnet login show</code></td>
<td>shows if login enabled</td>
<td></td>
</tr>
<tr>
<td>`console telnet login local set {OFF=0</td>
<td>ON=1}`</td>
<td>enables local login on/off</td>
</tr>
<tr>
<td><code>console telnet login local show</code></td>
<td>shows if local login enabled</td>
<td></td>
</tr>
<tr>
<td>`console telnet login radius set {OFF=0</td>
<td>ON=1}`</td>
<td>enables login for RADIUS on/off</td>
</tr>
<tr>
<td><code>console telnet login radius show</code></td>
<td>shows if RADIUS login enabled</td>
<td></td>
</tr>
<tr>
<td>`console telnet login delay set {OFF=0</td>
<td>ON=1}`</td>
<td>enables delay (after 3 login fails) on/off</td>
</tr>
<tr>
<td><code>console telnet login delay show</code></td>
<td>shows if login delay enabled</td>
<td></td>
</tr>
<tr>
<td>`console telnet pushmsgs config set {OFF=0</td>
<td>ON=1}`</td>
<td>enables persistent push msgs</td>
</tr>
<tr>
<td><code>console telnet pushmsgs config show</code></td>
<td>shows if persistent push msgs are enabled</td>
<td></td>
</tr>
<tr>
<td>`console telnet pushmsgs set {OFF=0</td>
<td>ON=1}`</td>
<td>enables temporary push msgs</td>
</tr>
<tr>
<td><code>console telnet pushmsgs show</code></td>
<td>shows if temporary push msgs are enabled</td>
<td></td>
</tr>
<tr>
<td><code>console telnet user set {username}</code></td>
<td>sets login user name</td>
<td></td>
</tr>
<tr>
<td><code>console telnet user show</code></td>
<td>shows login user name</td>
<td></td>
</tr>
<tr>
<td>`console ssh enabled set {OFF=0</td>
<td>ON=1}`</td>
<td>enables SSH</td>
</tr>
<tr>
<td><code>console ssh enabled show</code></td>
<td>shows if SSH enabled</td>
<td></td>
</tr>
<tr>
<td><code>console ssh port set {ip_port}</code></td>
<td>sets SSH port</td>
<td></td>
</tr>
<tr>
<td><code>console ssh port show</code></td>
<td>shows SSH port</td>
<td></td>
</tr>
<tr>
<td>`console ssh echo set {OFF=0</td>
<td>ON=1}`</td>
<td>enables echo on/off</td>
</tr>
<tr>
<td><code>console ssh echo show</code></td>
<td>shows if echo enabled</td>
<td></td>
</tr>
<tr>
<td>`console serial enabled set {OFF=0</td>
<td>ON=1}`</td>
<td>enables serial console on/off</td>
</tr>
<tr>
<td><code>console serial enabled show</code></td>
<td>shows if serial console enabled</td>
<td></td>
</tr>
<tr>
<td>`console serial raw set {OFF=0</td>
<td>ON=1}`</td>
<td>sets raw mode (disables editing) on/off</td>
</tr>
<tr>
<td><code>console serial raw show</code></td>
<td>shows if raw mode enabled</td>
<td></td>
</tr>
<tr>
<td>`console serial echo set {OFF=0</td>
<td>ON=1}`</td>
<td>enables echo on/off</td>
</tr>
<tr>
<td><code>console serial echo show</code></td>
<td>shows if echo enabled</td>
<td></td>
</tr>
<tr>
<td>`console serial kvm set {OFF=0</td>
<td>ON=1}`</td>
<td>enables binary KVM cmds on serial port on/off</td>
</tr>
<tr>
<td><code>console serial kvm show</code></td>
<td>shows if binary KVM cmds enabled</td>
<td></td>
</tr>
<tr>
<td>`console serial utf8 set {OFF=0</td>
<td>ON=1}`</td>
<td>enables UTF8 support</td>
</tr>
<tr>
<td><code>console serial utf8 show</code></td>
<td>shows if UTF8 enabled</td>
<td></td>
</tr>
<tr>
<td>`console serial login set {OFF=0</td>
<td>ON=1}`</td>
<td>enables login on/off</td>
</tr>
<tr>
<td><code>console serial login show</code></td>
<td>shows if login enabled</td>
<td></td>
</tr>
<tr>
<td>`console serial login local set {OFF=0</td>
<td>ON=1}`</td>
<td>enables local login on/off</td>
</tr>
<tr>
<td><code>console serial login local show</code></td>
<td>shows if local login enabled</td>
<td></td>
</tr>
<tr>
<td>`console serial login radius set {OFF=0</td>
<td>ON=1}`</td>
<td>enables login for RADIUS on/off</td>
</tr>
<tr>
<td><code>console serial login radius show</code></td>
<td>shows if RADIUS login enabled</td>
<td></td>
</tr>
<tr>
<td>`console serial login delay set {OFF=0</td>
<td>ON=1}`</td>
<td>enables delay (after 3 login fails) on/off</td>
</tr>
<tr>
<td><code>console serial login delay show</code></td>
<td>shows if login delay enabled</td>
<td></td>
</tr>
<tr>
<td>`console serial pushmsgs config set {OFF=0</td>
<td>ON=1}`</td>
<td>enables persistent push msgs</td>
</tr>
<tr>
<td><code>console serial pushmsgs config show</code></td>
<td>shows if persistent push msgs are enabled</td>
<td></td>
</tr>
<tr>
<td>`console serial pushmsgs set {OFF=0</td>
<td>ON=1}`</td>
<td>enables temporary push msgs</td>
</tr>
<tr>
<td><code>console serial pushmsgs show</code></td>
<td>shows if temporary push msgs are enabled</td>
<td></td>
</tr>
<tr>
<td><code>console serial user set {username}</code></td>
<td>sets login user name</td>
<td></td>
</tr>
<tr>
<td><code>console serial user show</code></td>
<td>shows login user name</td>
<td></td>
</tr>
<tr>
<td><code>console serial passwd d set {passwd d}</code></td>
<td>sets login passwd ord</td>
<td></td>
</tr>
<tr>
<td><code>console serial passwd d hash set {passwd d}</code></td>
<td>sets login hashed passwd ord</td>
<td></td>
</tr>
</tbody>
</table>
Specifications

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>email</code></td>
<td>enters cmd group "email"</td>
</tr>
<tr>
<td>`email enabled set {OFF=0</td>
<td>ON=1}`</td>
</tr>
<tr>
<td><code>email enabled show</code></td>
<td>shows if email is enabled</td>
</tr>
<tr>
<td><code>email sender set "(email_addr)"</code></td>
<td>sets email sender address</td>
</tr>
<tr>
<td><code>email sender show</code></td>
<td>shows email sender address</td>
</tr>
<tr>
<td><code>email recipient set "(email_addr)"</code></td>
<td>sets email recipient address</td>
</tr>
<tr>
<td><code>email recipient show</code></td>
<td>shows email recipient address</td>
</tr>
<tr>
<td><code>email server set "(dns_name)"</code></td>
<td>sets email SMTP server address</td>
</tr>
<tr>
<td><code>email server show</code></td>
<td>shows email SMTP server address</td>
</tr>
<tr>
<td><code>email port set (ip_port)</code></td>
<td>sets email SMTP port</td>
</tr>
<tr>
<td><code>email port show</code></td>
<td>shows email SMTP port</td>
</tr>
<tr>
<td>`email security set {NONE=0</td>
<td>STARTTLS=1</td>
</tr>
<tr>
<td><code>email security show</code></td>
<td>shows SMTP connection security</td>
</tr>
<tr>
<td>`email auth set {NONE=0</td>
<td>PLAIN=1</td>
</tr>
<tr>
<td><code>email auth show</code></td>
<td>shows email authentication</td>
</tr>
<tr>
<td><code>email user set "(username)"</code></td>
<td>sets SMTP username</td>
</tr>
<tr>
<td><code>email user show</code></td>
<td>shows SMTP username</td>
</tr>
<tr>
<td><code>email passw d set "(passwd)"</code></td>
<td>sets SMTP password</td>
</tr>
<tr>
<td><code>email passw d hash set "(passwd)"</code></td>
<td>sets crypted SMTP password</td>
</tr>
<tr>
<td><code>email testmail</code></td>
<td>sends test email</td>
</tr>
<tr>
<td><code>ethernet</code></td>
<td>enters cmd group "ethernet"</td>
</tr>
<tr>
<td><code>ethernet mac show</code></td>
<td>shows MAC address</td>
</tr>
<tr>
<td><code>ethernet link show</code></td>
<td>shows ethernet link state</td>
</tr>
<tr>
<td>`ethernet phyprefer set {10MBIT_HD=0</td>
<td>10MBIT_FD=1</td>
</tr>
<tr>
<td><code>ethernet phyprefer show</code></td>
<td>shows preferred speed for PHY Auto Negotation</td>
</tr>
<tr>
<td><code>extsensor</code></td>
<td>enters cmd group "extsensor"</td>
</tr>
<tr>
<td><code>extsensor all show</code></td>
<td>shows all values from connected external sensors</td>
</tr>
<tr>
<td><code>extsensor all show</code></td>
<td>shows all plugged sensors and fields</td>
</tr>
<tr>
<td><code>extsensor (port_num) {sen_field} value show</code></td>
<td>shows sensor value</td>
</tr>
<tr>
<td><code>extsensor (port_num) {sen_type} label set "(name)"</code></td>
<td>sets sensor name to label</td>
</tr>
<tr>
<td><code>extsensor (port_num) {sen_type} label show</code></td>
<td>shows label of sensor</td>
</tr>
<tr>
<td><code>extsensor (port_num) {sen_type} type show</code></td>
<td>shows type of sensor</td>
</tr>
<tr>
<td>`extsensor (port_num) {sen_type} {sen_field} events set {off=0</td>
<td>on=1}`</td>
</tr>
<tr>
<td><code>extsensor (port_num) {sen_type} {sen_field} events show</code></td>
<td>shows if sensor events are enabled</td>
</tr>
<tr>
<td><code>extsensor (port_num) {sen_type} {sen_field} events type set "(EVT_SYSLOG=0,EVT_SNMP=1,EVT_EMAIL=2,EVT_SMS=3,EVT_GSMEMAIL=4,EVT_BEEPER=5,EVT_DISPLAY=6,EVT_CONSOLE=7,EVT_MQTT=8)"</code></td>
<td>enables different event types</td>
</tr>
<tr>
<td><code>extsensor (port_num) {sen_type} {sen_field} events type show</code></td>
<td>shows what event types are enabled</td>
</tr>
<tr>
<td><code>extsensor (port_num) {sen_type} {sen_field} maxval set (num)</code></td>
<td>sets maximum value for sensor</td>
</tr>
<tr>
<td><code>extsensor (port_num) {sen_type} {sen_field} maxval show</code></td>
<td>shows maximum value for sensor</td>
</tr>
<tr>
<td><code>extsensor (port_num) {sen_type} {sen_field} minval set (num)</code></td>
<td>sets minimum value for sensor</td>
</tr>
<tr>
<td><code>extsensor (port_num) {sen_type} {sen_field} minval show</code></td>
<td>shows minimum value for sensor</td>
</tr>
<tr>
<td><code>extsensor (port_num) {sen_type} {sen_field} hyst set (num)</code></td>
<td>sets hysterese value for sensor</td>
</tr>
<tr>
<td><code>extsensor (port_num) {sen_type} {sen_field} hyst show</code></td>
<td>shows hysterese value for sensor</td>
</tr>
<tr>
<td>`extsensor (port_num) {sen_type} {sen_field} publish mode set {NONE=0</td>
<td>INTERVAL=1</td>
</tr>
<tr>
<td><code>extsensor (port_num) {sen_type} {sen_field} publish mode show</code></td>
<td>shows publish mode</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>`extsensor {port_num} {sen_type} {sen_field} publish mqtt retain set {OFF=0</td>
<td>ON=1}`</td>
</tr>
<tr>
<td><code>extsensor {port_num} {sen_type} {sen_field} publish mqtt retain show</code></td>
<td>show if MQTT retain set</td>
</tr>
<tr>
<td><code>extsensor {port_num} {sen_type} {sen_field} publish timer set {num_secs}</code></td>
<td>sets publish time interval</td>
</tr>
<tr>
<td><code>extsensor {port_num} {sen_type} {sen_field} publish timer show</code></td>
<td>show publish time interval</td>
</tr>
<tr>
<td><code>extsensor {port_num} {sen_type} {sen_field} publish delta set {float}</code></td>
<td>sets publish delta value</td>
</tr>
<tr>
<td><code>extsensor {port_num} {sen_type} {sen_field} publish delta show</code></td>
<td>show publish delta value</td>
</tr>
<tr>
<td>`extsensor {port_num} {sen_type} {sen_field} (BELOWMIN=0</td>
<td>ABOVEMIN=1</td>
</tr>
<tr>
<td>`extsensor period set {24H=0</td>
<td>12H=1</td>
</tr>
<tr>
<td><code>extsensor period show</code></td>
<td>show sensor Min/Max measurement period</td>
</tr>
<tr>
<td><code>http</code></td>
<td>enters cmd group "http"</td>
</tr>
<tr>
<td>`http server set {HTTP_BOTH=0</td>
<td>HTTPS_ONLY=1</td>
</tr>
<tr>
<td><code>http server show</code></td>
<td>show accepted connection types</td>
</tr>
<tr>
<td><code>http port set {ip_port}</code></td>
<td>sets HTTP port</td>
</tr>
<tr>
<td><code>http port show</code></td>
<td>show HTTP port</td>
</tr>
<tr>
<td><code>http portssl set {ip_port}</code></td>
<td>sets HTTPS port</td>
</tr>
<tr>
<td><code>http portssl show</code></td>
<td>show HTTPS port</td>
</tr>
<tr>
<td>`http tls mode set {TLS12=0</td>
<td>TLS13_12=1</td>
</tr>
<tr>
<td><code>http tls mode show</code></td>
<td>show TLS mode restriction</td>
</tr>
<tr>
<td>`http ajax enabled set {OFF=0</td>
<td>ON=1}`</td>
</tr>
<tr>
<td>`http password enabled set {OFF=0</td>
<td>ON=1}`</td>
</tr>
<tr>
<td>`http password local set {OFF=0</td>
<td>ON=1}`</td>
</tr>
<tr>
<td><code>http password login set "{password}"</code></td>
<td>sets HTTP user password</td>
</tr>
<tr>
<td><code>http password admin set "{password}"</code></td>
<td>sets HTTP admin password</td>
</tr>
<tr>
<td><code>http password hash user set "{password}"</code></td>
<td>sets hashed HTTP user password</td>
</tr>
<tr>
<td><code>http password hash admin set "{password}"</code></td>
<td>sets hashed HTTP admin password</td>
</tr>
<tr>
<td><code>input</code></td>
<td>enters cmd group "input"</td>
</tr>
<tr>
<td><code>input {port_num} state show</code></td>
<td>shows input state</td>
</tr>
<tr>
<td>`input all state {MODE0=0</td>
<td>MODE1=1</td>
</tr>
<tr>
<td><code>input {port_num} name set "{name}"</code></td>
<td>sets sensor name to label</td>
</tr>
<tr>
<td><code>input {port_num} name show</code></td>
<td>show label of sensor</td>
</tr>
<tr>
<td>`input {port_num} invert enabled set {OFF=0</td>
<td>ON=1}`</td>
</tr>
<tr>
<td><code>input {port_num} invert enabled show</code></td>
<td>show if input inverted</td>
</tr>
<tr>
<td>`input {port_num} label {LOW=0</td>
<td>HIGH=1} set "{name}"`</td>
</tr>
<tr>
<td>`input {port_num} label {LOW=0</td>
<td>HIGH=1} show`</td>
</tr>
<tr>
<td>`input {port_num} events set {OFF=0</td>
<td>ON=1}`</td>
</tr>
</tbody>
</table>
Specifications

input {port_num} events show
show s if input events are enabled

input {port_num} events type set
"*EVT_SYLOG=0,EVT_SNMP=1,EVT_EMAIL=2,EVT_SMS=3,EVT_GSMEMAIL=4,EVT_BEEPER=5,EVT_DISPLAY=6,EVT_CONSOLE=7"*
enables different event types

input {port_num} events type show
show s what event types are enabled

input {port_num} {LOW=0|HIGH=1} port set
{port_num}
sets Port for Power Port Switching actions

input {port_num} {LOW=0|HIGH=1} port show
shows Port for Power Port Switching actions

input {port_num} {LOW=0|HIGH=1} state set
{OFF=0|ON=1|DISABLED=2}
sets Port state for Power Port Switching actions

input {port_num} {LOW=0|HIGH=1} state show
shows Port state for Power Port Switching actions

input volt3 state show
shows state of 3V input voltage {ON=1|VERR=3}

input volt12 state set {OFF=0|VLO=1|VHI=2}
sets state of 12V input voltage

input volt12 state show
shows state of 12V input voltage {OFF=0|VLO=1|VHI=2|VERR=3} incl possible error condition

ip
enters cmd group "ip"

ip hostname set "(name)"
sets device hostname

ip hostname show
shows device hostname 3

ip address set "{ip_address}"*
sets IPv4 address

ip address show
shows IPv4 address 3

ip netmask set "{ip_address}"*
sets IPv4 netmask

ip netmask show
shows IPv4 netmask 3

ip gateway set "{ip_address}"*
sets IPv4 gateway address

ip gateway show
shows IPv4 gateway address 3

ip dns set "{ip_address}"*
sets IPv4 DNS server address

ip dns show
shows IPv4 DNS server address 3

ip dhcp enabled set {OFF=0|ON=1}
enables IPv4 DHCP on/off

ip dhcp enabled show
shows IPv4 DHCP state 3

ip6
enters cmd group "ip6"

ip6 enabled set {OFF=0|ON=1}
enables IPv6 on/off

ip6 enabled show
shows if IPv6 is enabled 3

ip6 routadv enabled set {OFF=0|ON=1}
enables IPv6 router advertisement

ip6 routadv enabled show
shows IPv6 router advertisement state 3

ip6 dhcp enabled set {OFF=0|ON=1}
enables IPv6 DHCP on/off

ip6 dhcp enabled show
shows if IPv6 DHCP is enabled 3

ip6 address show
shows all IPv6 addresses 4

ip6 gateway show
shows all IPv6 gateway addresses 4

ip6 dns show
shows all IPv6 DNS server addresses 4

ip6 manual enabled set {OFF=0|ON=1}
enables manual IPv6 addresses

ip6 manual enabled show
shows if manual IPv6 addresses are enabled 3

ip6 manual address {1..4} set "{ip_address}"*
sets manual IPv6 address

ip6 manual address {1..4} show
shows manual IPv6 address 3

ip6 manual gateway set "{ip_address}"*
sets manual IPv6 gateway address

ip6 manual gateway show
shows manual IPv6 gateway address 3

ip6 manual dns {1..2} set "{ip_address}"*
sets manual IPv6 DNS server addresses

ip6 manual dns {1..2} show
shows manual IPv6 DNS server addresses 3

ipacl
enters cmd group "ipacl"

ipacl ping enabled set {OFF=0|ON=1}
enables ICMP ping on/off

ipacl ping enabled show
shows if ICMP ping enabled 3

ipacl enabled set {OFF=0|ON=1}
enables IP filter on/off

ipacl enabled show
shows if IP filter enabled 3

ipacl filter {ipacl_num} set "(dns_name)"
sets IP filter {ipacl_num}

ipacl filter {ipacl_num} show
shows IP filter {ipacl_num}

modbus
enters cmd group "modbus"

modbus enabled set <off=0|on=1>
enables Modbus TCP support

modbus enabled show
shows if Modbus is enabled

modbus port set <ip_port>
sets Modbus TCP port

modbus port show
shows Modbus TCP port

73
Specifications

mqtt

- mqtt {broker_idx} enabled set {OFF=0|ON=1}
 - enters cmd group "mqtt"
 - enable mqtt
- mqtt {broker_idx} enabled show
 - show s if mqtt enabled
- mqtt {broker_idx} server set ""{dns_name}""
 - sets broker name
- mqtt {broker_idx} server show
 - show s broker name
- mqtt {broker_idx} tls enabled set {OFF=0|ON=1}
 - enable TLS
- mqtt {broker_idx} tls enabled show
 - show s if TLS enabled
- mqtt {broker_idx} port set {ip_port}
 - set broker TCP/IP port
- mqtt {broker_idx} port show
 - show s broker TCP/IP port
- mqtt {broker_idx} user set ""{username}""
 - sets username
- mqtt {broker_idx} user show
 - show s username
- mqtt {broker_idx} passwd set ""{passwd}""
 - sets password
- mqtt {broker_idx} passwd hash set ""{passwd}""
 - sets hashed passwd
- mqtt {broker_idx} client set ""{name}""
 - sets client name
- mqtt {broker_idx} client show
 - show s client name
- mqtt {broker_idx} qos set {QOS0=0|QOS1=1}
 - sets QoS level
- mqtt {broker_idx} qos show
 - show s QoS level
- mqtt {broker_idx} keepalive set {num_secs}
 - sets keep-alive time
- mqtt {broker_idx} keepalive show
 - show s keep-alive time
- mqtt {broker_idx} topic set ""{name}""
 - sets topic prefix
- mqtt {broker_idx} topic show
 - show s topic prefix
- mqtt {broker_idx} console enabled set {OFF=0|ON=1}
 - permit console cmds
- mqtt {broker_idx} console enabled show
 - show s if console cmds allowed
- mqtt {broker_idx} device data timer set {num_secs}
 - sets telemetry interval
- mqtt {broker_idx} device data timer show
 - show s telemetry interval

port

- port {port_num} state set {OFF=0|ON=1}
 - sets port to new state
- port {port_num} state show
 - show s port state
- port all state set "{port_list}" {OFF=0|ON=1}
 - sets several ports in one cmd - e.g. port all state set "1,3,5" 1
- port all state {MODE0=0|MODE1=1|MODE2=2} show
 - show s all port states in 3 different view modes
- port all set {OFF=0|ON=1|OFF_REV=2|ON_REV=3}
 - switch all ports on/off forward or reverse
- port restart all set {REINIT=0|OFF_REV_REINIT=1|OFF_REINIT=2}
 - reinit coldstart sequence (optional first all off)
- port {port_num} reset
 - start reset sequence for port
- port {port_num} loggle
 - toggles port
- port {port_num} batch set {OFF=0|ON=1} w all {num_secs} {OFF=0|ON=1}
 - starts batch mode for port
- port {port_num} batch cancel
 - cancels batch mode
- port {port_num} label set ""{name}""
 - sets port label name
- port {port_num} label show
 - show s port label name
- port {port_num} initstate coldstart set {OFF=0|ON=1|REMEMBER=2}
 - sets port coldstart initialization
- port {port_num} initstate coldstart show
 - show s port coldstart initialization
- port {port_num} initstate delay set {num}
 - sets port init delay
- port {port_num} initstate delay show
 - show s port init delay
- port {port_num} repow erdelay set {num}
 - sets port repower delay
- port {port_num} repow erdelay show
 - show s port repower delay
- port {port_num} resetime set {num}
 - sets port reset duration
- port {port_num} resetime show
 - show s port reset duration
- port {port_num} wairdog enabled set {OFF=0|ON=1}
 - sets port w airdog to on/off
- port {port_num} wairdog enabled show
 - show s port w airdog state
- port {port_num} wairdog mode set {OFF=0|PORT_RESET=1|IP_MS=2|IP_MS_INV=3}
 - sets port w airdog mode
- port {port_num} wairdog mode show
 - show s port w airdog mode
- port {port_num} wairdog type set {WD ICMP=0|WD_TCP=1}
 - sets port w airdog type
- port {port_num} wairdog type show
 - show s port w airdog type
- port {port_num} wairdog link dow n set {OFF=0|ON=1}
 - sets if w airdog active w hen eth link dow n
Specifications

port {port_num} watchdog link dow n show
port {port_num} watchdog host set "{dns_name}"
port {port_num} watchdog host show
port {port_num} watchdog port set {ip_port}
port {port_num} watchdog port show
port {port_num} watchdog pinginterval set {num}
port {port_num} watchdog pinginterval show
port {port_num} watchdog pingretries set {num}
port {port_num} watchdog pingretries show
port {port_num} watchdog retrybooting set {OFF=0|ON=1}
port {port_num} watchdog retrybooting show
port {port_num} watchdog bootretries set {num}
port {port_num} watchdog bootretries show

radius
radius {PRIMARY=0|SECONDARY=1} enabled set <off=0/on=1>
enables radius client
radius {PRIMARY=0|SECONDARY=1} enabled show
show if radius client enabled
radius {PRIMARY=0|SECONDARY=1} server set "<dns_name>"
sets radius server address
radius {PRIMARY=0|SECONDARY=1} server show
show s radius server address
radius {PRIMARY=0|SECONDARY=1} passw ord set "<password>"
sets radius server shared secret
radius {PRIMARY=0|SECONDARY=1} passw ord hash set "<password>"
sets radius server encrypted shared secret
radius {PRIMARY=0|SECONDARY=1} auth timeout set {num_secs}
sets server request timeout
radius {PRIMARY=0|SECONDARY=1} auth timeout show
shows server request timeout
radius {PRIMARY=0|SECONDARY=1} retries set {0..99}
sets server number of retries
radius {PRIMARY=0|SECONDARY=1} retries show
shows server number of retries
radius chap enabled set <off=0/on=1>
enables CHAP
radius chap enabled show
show if CHAP is enabled
radius message auth set <off=0/on=1>
enables request message authentication
radius message auth show
shows if request message authentication is enabled
radius default timeout set {num_secs}
sets default session timeout (when not returned as Session-Timout Attribute)
radius default timeout show
shows default session timeout

snmp
snmp port set {ip_port}
sets SNMP UDP port
snmp port show
shows SNMP UDP port
snmp snmpget enabled set {OFF=0|ON=1}
enables SNMP GET cmds on/off
snmp snmpget enabled show
show if SNMP GET cmds are enabled
snmp snmpset enabled set {OFF=0|ON=1}
enables SNMP SET cmds on/off
snmp snmpset enabled show
show if SNMP SET cmds are enabled
snmp snmpv2 public set "{text}"
sets SNMP v2 public community
snmp snmpv2 private set "{text}"
sets SNMP v2 private community
snmp snmpv2 private show
shows SNMP v2 private community
snmp system {CONTACT=0|NAME=1|LOCATION=2} set "{text}" sets sysLocation/sysName/sysContact
snmp system {CONTACT=0|NAME=1|LOCATION=2} show
gets sysLocation/sysName/sysContact
snmp snmpv3 enabled set {OFF=0|ON=1}
enables SNMP v3 is enabled
snmp snmpv3 enabled show
shows SNMP v3 is enabled
snmp snmpv3 username set "{text}"
sets SNMP v3 username
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>snmp snmpv3 username show</td>
<td>show SNMP v3 username</td>
</tr>
<tr>
<td>snmp snmpv3 authalg set</td>
<td>sets SNMP v3 authentication</td>
</tr>
<tr>
<td>snmp snmpv3 authalg show</td>
<td>show SNMP v3 authentication algorithm</td>
</tr>
<tr>
<td>snmp snmpv3 privalg set</td>
<td>sets SNMP v3 privacy authentication</td>
</tr>
<tr>
<td>snmp snmpv3 privalg show</td>
<td>show SNMP v3 privacy algorithm</td>
</tr>
<tr>
<td>snmp snmpv3 authpasswd set</td>
<td>sets SNMP v3 authentication password</td>
</tr>
<tr>
<td>snmp snmpv3 privpasswd set</td>
<td>sets SNMP v3 privacy password</td>
</tr>
<tr>
<td>snmp snmpv3 authpasswd hash set</td>
<td>sets SNMP v3 authentication hashed password</td>
</tr>
<tr>
<td>snmp snmpv3 privpasswd hash set</td>
<td>sets SNMP v3 privacy hashed password</td>
</tr>
<tr>
<td>snmp trap type set</td>
<td>sets type of SNMP traps</td>
</tr>
<tr>
<td>snmp trap type show</td>
<td>show SNMP trap type</td>
</tr>
<tr>
<td>snmp trap receiver (trap_num) set</td>
<td>sets address and port of SNMP trap receiver (trap_num)</td>
</tr>
<tr>
<td>syslog enabled set</td>
<td>enables syslog messages on/off</td>
</tr>
<tr>
<td>syslog enabled show</td>
<td>show if syslog enabled</td>
</tr>
<tr>
<td>syslog server set</td>
<td>sets address of syslog server</td>
</tr>
<tr>
<td>syslog server show</td>
<td>show s address of syslog server</td>
</tr>
<tr>
<td>system restart</td>
<td>restarts device</td>
</tr>
<tr>
<td>system fabsettings</td>
<td>restore fab settings and restart device</td>
</tr>
<tr>
<td>system bootloader</td>
<td>enters bootloader mode</td>
</tr>
<tr>
<td>system flushdns</td>
<td>flush DNS cache</td>
</tr>
<tr>
<td>system uptime</td>
<td>number of seconds the device is running</td>
</tr>
<tr>
<td>system name show</td>
<td>show s device name</td>
</tr>
<tr>
<td>system version show</td>
<td>show s actual firmware version</td>
</tr>
<tr>
<td>system {SWITCH_PORT=0} events set</td>
<td>enable global events</td>
</tr>
<tr>
<td>system {SWITCH_PORT=0} events type set</td>
<td>enables different event types</td>
</tr>
<tr>
<td>system {SWITCH_PORT=0} events mqtt retain set</td>
<td>sets mqtt retain set</td>
</tr>
<tr>
<td>system {SWITCH_PORT=0} events mqtt retain show</td>
<td>show s if mqtt retain set</td>
</tr>
<tr>
<td>system panel enabled set</td>
<td>blocks panel buttons when not enabled</td>
</tr>
<tr>
<td>system panel enabled show</td>
<td>show s if panel buttons are enabled</td>
</tr>
<tr>
<td>system panel port all set</td>
<td>enable switch all relays from panel buttons</td>
</tr>
<tr>
<td>system panel port all show</td>
<td>show s if switch all relays from panel buttons enabled</td>
</tr>
<tr>
<td>system sensor</td>
<td>show s internal sensors if model supports it</td>
</tr>
<tr>
<td>timer enabled set</td>
<td>enables timer functions</td>
</tr>
<tr>
<td>timer enabled show</td>
<td>show s if timer is enabled</td>
</tr>
<tr>
<td>timer syslog facility set</td>
<td>sets facility level for timer syslog</td>
</tr>
<tr>
<td>timer syslog verbose set</td>
<td>sets verbose level for timer syslog</td>
</tr>
<tr>
<td>timer syslog verbose show</td>
<td>show s verbose level for timer syslog</td>
</tr>
<tr>
<td>timer {rule_num} enabled set</td>
<td>enables rule</td>
</tr>
<tr>
<td>timer {rule_num} enabled show</td>
<td>show s if rule is enabled</td>
</tr>
<tr>
<td>timer {rule_num} name set</td>
<td>sets name of rule</td>
</tr>
<tr>
<td>timer {rule_num} name show</td>
<td>show s name of rule</td>
</tr>
</tbody>
</table>
Specifications

timer {rule_num} {FROM=0|UNTIL=1} set "{yyyy-mm-dd}"
sets date range of rule

timer {rule_num} {FROM=0|UNTIL=1} show
shows date range of rule

timer {rule_num} trigger jitter set (0..65535)
sets jitter for rule

timer {rule_num} trigger jitter show
shows jitter of rule

timer {rule_num} trigger random set (0..100)
sets probability for rule

timer {rule_num} trigger random show
shows rule probability

timer {rule_num} trigger {HOUR=0|MIN=1|SEC=2|DAY=3|MON=4|DOW=5} set "{time_date_list}"
sets time date list

timer {rule_num} trigger {HOUR=0|MIN=1|SEC=2|DAY=3|MON=4|DOW=5} show
shows time date list

timer {rule_num} action mode set {SWITCH=1|CLI=2}
sets switch or cli cmd

timer {rule_num} action mode show
shows if switch or cli cmd

timer {rule_num} action {SWITCH1=0|SWITCH2=1} {OFF=0|ON=1} set "{port_list}"
sets port list for switch cmd

timer {rule_num} action {SWITCH1=0|SWITCH2=1} (OFF=0|ON=1) show
shows port list for switch cmd

timer {rule_num} action delay set (0..65535)
delay between cmds

timer {rule_num} action delay show
shows delay between cmds

timer {rule_num} action console set "{cmd}"
sets cmd string

timer {rule_num} action console show
shows cmd string

timer {rule_num} action hash set "{data}"
sets action binary form

timer {rule_num} action hash show
shows action binary form

timer {rule_num} delete
delete one timer

timer delete all
delete all timer

vt100
enters cmd group "vt100"

vt100 echo set {OFF=0|ON=1}
sets console echo state

vt100 echo show
shows console echo state

vt100 numeric set (OFF=0|ON=1)
sets numeric mode

vt100 numeric show
shows numeric mode state

vt100 reset
resets terminal

Notes

1. Legacy - The command has been replaced by a newer version
2. Command can be entered on any level
3. The output may show 2 lines - the 1st line shows the actual state, the 2nd line the status after reboot
4. The output may show several lines
5. N/A
6. Please see the External Type and External Sensor Field Tables for the correct sensor index

External Sensor Type Table "{sen_type}"

Constants "{7x01=0|7x04=0|7x02=1|7x05=1|7x06=2}"

<table>
<thead>
<tr>
<th>Index</th>
<th>Description</th>
<th>Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Temperature</td>
<td>7001, 7101, 7201</td>
</tr>
<tr>
<td>0</td>
<td>Temperature</td>
<td>7004, 7104, 7204</td>
</tr>
<tr>
<td>1</td>
<td>Temperature, Humidity</td>
<td>7002, 7102, 7202</td>
</tr>
<tr>
<td>1</td>
<td>Temperature, Humidity</td>
<td>7005, 7105, 7205</td>
</tr>
<tr>
<td>2</td>
<td>Temperature, Humidity, Air Pressure</td>
<td>7006, 7106, 7206</td>
</tr>
</tbody>
</table>

External Sensor Field Table "{sen_field}"
4.9 Modbus TCP

Important: All calculations in this chapter are based on addresses starting at "0". For some Modbus TCP Utilities, however, the addresses start at 1, in which case a 1 must be added to the addresses in this chapter. Please try both possibilities for tests!

Important: If an attempt is made to access registers that do not exist for the respective device, then an access error will occur. If a device has e.g. 8 relays, then only the first eight coils can be accessed without error!

If Modbus TCP is activated in the configuration, the ports (relays, outputs, eFuses) can be switched and the following data is callable:

Address range overview:

<table>
<thead>
<tr>
<th>Device Resource</th>
<th>Start</th>
<th>End</th>
<th>Modbus Data Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power/Output/eFuse Ports</td>
<td>0x000</td>
<td>0x3ff</td>
<td>Coils</td>
</tr>
<tr>
<td>DC Inputs</td>
<td>0x400</td>
<td>0x7ff</td>
<td>Discrete Inputs</td>
</tr>
<tr>
<td>Stop Condition active</td>
<td>0x800</td>
<td>0x800</td>
<td>Discrete Inputs</td>
</tr>
<tr>
<td>POE active</td>
<td>0x801</td>
<td>0x801</td>
<td>Discrete Inputs</td>
</tr>
<tr>
<td>Status Power Sources</td>
<td>0x1000</td>
<td>0x100f</td>
<td>Discrete Inputs</td>
</tr>
<tr>
<td>OVP active (Line-Ins)</td>
<td>0x1010</td>
<td>0x101f</td>
<td>Discrete Inputs</td>
</tr>
<tr>
<td>Fuse ok</td>
<td>0x1020</td>
<td>0x102f</td>
<td>Discrete Inputs</td>
</tr>
<tr>
<td>ETS Input Power nominal</td>
<td>0x1030</td>
<td>0x1031</td>
<td>Discrete Inputs</td>
</tr>
<tr>
<td>eFuse Errors</td>
<td>0x1100</td>
<td>0x11ff</td>
<td>Discrete Inputs</td>
</tr>
<tr>
<td>Info Area</td>
<td>0x000</td>
<td>0x005</td>
<td>Input Registers</td>
</tr>
<tr>
<td>CPU Sensor values</td>
<td>0x080</td>
<td>0x083</td>
<td>Input Registers</td>
</tr>
<tr>
<td>External Sensors</td>
<td>0x100</td>
<td>0x1ff</td>
<td>Input Registers</td>
</tr>
<tr>
<td>Fan Level</td>
<td>0x200</td>
<td>0x20f</td>
<td>Input Registers</td>
</tr>
<tr>
<td>Line Energy Sensors</td>
<td>0x400</td>
<td>0x39ff</td>
<td>Input Registers</td>
</tr>
<tr>
<td>Port Energy Sensors</td>
<td>0x3a00</td>
<td>0x81ff</td>
<td>Input Registers</td>
</tr>
<tr>
<td>Bank Energy Sensors</td>
<td>0x8200</td>
<td>0x823f</td>
<td>Input Registers</td>
</tr>
<tr>
<td>Power Source Sensors</td>
<td>0x8240</td>
<td>0x827f</td>
<td>Input Registers</td>
</tr>
<tr>
<td>Residual Current Monitor</td>
<td>0x8280</td>
<td>0x82cf</td>
<td>Input Registers</td>
</tr>
<tr>
<td>Bank Power Source Select</td>
<td>0x000</td>
<td>0x00f</td>
<td>Holding Registers</td>
</tr>
<tr>
<td>Fan Mode</td>
<td>0x010</td>
<td>0x01f</td>
<td>Holding Registers</td>
</tr>
</tbody>
</table>

Important: This chapter is general for all Gude devices. Depending on the device type, some ports or certain sensors are not available.
Specifications

The Unit-ID is ignored because the device is uniquely identified by its IP address.

Supported Modbus TCP Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Request Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read Coils</td>
<td>0x01</td>
</tr>
<tr>
<td>Read Discrete Inputs</td>
<td>0x02</td>
</tr>
<tr>
<td>Write Single Coil</td>
<td>0x05</td>
</tr>
<tr>
<td>Write Multiple Coils</td>
<td>0x0f</td>
</tr>
<tr>
<td>Read Input Registers</td>
<td>0x04</td>
</tr>
<tr>
<td>Read Holding Registers</td>
<td>0x03</td>
</tr>
<tr>
<td>Write Holding Register</td>
<td>0x06</td>
</tr>
<tr>
<td>Write Multiple Holding Registers</td>
<td>0x10</td>
</tr>
<tr>
<td>Read Device Identification</td>
<td>0x2B / 0x0E</td>
</tr>
</tbody>
</table>

Coils

<table>
<thead>
<tr>
<th>Device Resource</th>
<th>Start</th>
<th>End</th>
<th>Device Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power/Output/eFuse</td>
<td>0x000</td>
<td>0x3ff</td>
<td>Coil represents Port State</td>
</tr>
</tbody>
</table>

Discrete Inputs

<table>
<thead>
<tr>
<th>Device Resource</th>
<th>Start</th>
<th>End</th>
<th>Function when set</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Inputs</td>
<td>0x400</td>
<td>0x7ff</td>
<td>Input logically 1</td>
</tr>
<tr>
<td>Stop Condition active</td>
<td>0x800</td>
<td>0x800</td>
<td>Stop Input active</td>
</tr>
<tr>
<td>POE active</td>
<td>0x801</td>
<td>0x801</td>
<td>POE active</td>
</tr>
<tr>
<td>Status Power Sources</td>
<td>0x1000</td>
<td>0x100f</td>
<td>Power Source active</td>
</tr>
<tr>
<td>OVP active (Line-Ins)</td>
<td>0x1010</td>
<td>0x101f</td>
<td>OVP active</td>
</tr>
<tr>
<td>Fuse ok</td>
<td>0x1020</td>
<td>0x1020</td>
<td>Fuse functional (ETS 8801)</td>
</tr>
<tr>
<td>ETS Input Power normal</td>
<td>0x1030</td>
<td>0x1031</td>
<td>Voltage nominal (ETS 8801)</td>
</tr>
<tr>
<td>eFuse Error</td>
<td>0x1100</td>
<td>0x11ff</td>
<td>eFuse Error (EPC 8291)</td>
</tr>
</tbody>
</table>

DC Inputs:

The DC inputs can be found in the Discrete Inputs. The inputs are arranged as follows:

Input: 0x0400 + Port * 0x40 + Input-number (starts with zero).

Port is the number of the external sensor port. For inputs permanently installed in the device, Port = 0.

Example for the first input at external input sensor in port 2: 0x400 + 2 * 0x40 + 0 = 0x480

Status Power Sources:
Specifications

Power Sources

<table>
<thead>
<tr>
<th>Power Sources</th>
<th>Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPC 8221 / 8226</td>
<td>0 = Bank A, 1 = Bank B</td>
</tr>
<tr>
<td>ENC 2111 / 2191</td>
<td>0 = Pwr1, 1 = Pwr2</td>
</tr>
<tr>
<td>ESB 7213 / 7214</td>
<td>0 = Pwr1, 1 = Pwr2 (only 7214)</td>
</tr>
</tbody>
</table>

Input Registers

<table>
<thead>
<tr>
<th>Device Resource</th>
<th>Start</th>
<th>End</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Info Bereich</td>
<td>0x000</td>
<td>0x005</td>
<td>see table</td>
</tr>
<tr>
<td>CPU Sensor values</td>
<td>0x080</td>
<td>0x083</td>
<td>see table</td>
</tr>
<tr>
<td>Extreme Sensoren</td>
<td>0x100</td>
<td>0x1ff</td>
<td>see table</td>
</tr>
<tr>
<td>Fan Level</td>
<td>0x200</td>
<td>0x20f</td>
<td>0 (aus) bis 3 (maximal)</td>
</tr>
<tr>
<td>Line Energy Sensors</td>
<td>0x400</td>
<td>0x3ff</td>
<td>see table</td>
</tr>
<tr>
<td>Port Energy Sensors</td>
<td>0x3a00</td>
<td>0x81ff</td>
<td>see table</td>
</tr>
<tr>
<td>Bank Energy Sensors</td>
<td>0x8200</td>
<td>0x823f</td>
<td>see table</td>
</tr>
<tr>
<td>Power Source Sensors</td>
<td>0x8240</td>
<td>0x827f</td>
<td>see table</td>
</tr>
<tr>
<td>Residual Current Monitor</td>
<td>0x8280</td>
<td>0x82cf</td>
<td>see table</td>
</tr>
</tbody>
</table>

Info Area

<table>
<thead>
<tr>
<th>Address</th>
<th>Width</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>16-bit</td>
<td>Number of Ports (Relay)</td>
</tr>
<tr>
<td>1</td>
<td>16-bit</td>
<td>Number of Ports (Outlets) with Energy Measurement</td>
</tr>
<tr>
<td>2</td>
<td>16-bit</td>
<td>Number of Banks</td>
</tr>
<tr>
<td>3</td>
<td>16-bit</td>
<td>Number of Line-In</td>
</tr>
<tr>
<td>4</td>
<td>16-bit</td>
<td>Phases per line</td>
</tr>
<tr>
<td>5</td>
<td>16-bit</td>
<td>Number of Inputs</td>
</tr>
</tbody>
</table>

Sensor Type Description

<table>
<thead>
<tr>
<th>Address</th>
<th>Width</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x080 to 0x083</td>
<td>16-bit (signed)</td>
<td>CPU Sensor values</td>
</tr>
<tr>
<td>0x100 to 0x1ff</td>
<td>16-bit (signed)</td>
<td>external Sensors</td>
</tr>
<tr>
<td>0x400 to 0x39ff</td>
<td>32-bit (signed)</td>
<td>Line Energy Sensors</td>
</tr>
<tr>
<td>0x3a00 to 0x81ff</td>
<td>32-bit (signed)</td>
<td>Port Energy Sensors</td>
</tr>
<tr>
<td>0x8200 to 0x823f</td>
<td>16-bit (signed)</td>
<td>Bank Energy Sensors</td>
</tr>
<tr>
<td>0x8240 to 0x827f</td>
<td>16-bit (signed)</td>
<td>Power Source Energy Sensors</td>
</tr>
<tr>
<td>0x8280 to 0x82cf</td>
<td>16-bit (signed)</td>
<td>Residual Current Monitor</td>
</tr>
</tbody>
</table>

CPU Sensor Values

<table>
<thead>
<tr>
<th>Offset</th>
<th>Sensor Field</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Vsystem</td>
<td>0.01 V</td>
</tr>
<tr>
<td>1</td>
<td>Vaux</td>
<td>0.01 V</td>
</tr>
<tr>
<td>2</td>
<td>Vmain</td>
<td>0.01 V</td>
</tr>
<tr>
<td>3</td>
<td>CPU Temperature</td>
<td>0.1 °C</td>
</tr>
</tbody>
</table>
Specifications

External Sensors:

The measured value of the external sensors are coded as fixed point arithmetic. For a factor of e.g. 0.1 in the unit the value must be divided by 10 in order to reach the real measured value. A value of 0x8000 means that no sensor is plugged into the corresponding port, or the corresponding field in the sensor is not available. The formula for the address is (the port numbers start at zero):

$$0x100 + Port \times 8 + \text{Offset}$$

In the Expert Sensor Box 7213 / 7214 the internal sensor corresponds to the value Port = 0, and is coded Port = 1 for Sensor 2 and Port = 2 for Sensor 3.

<table>
<thead>
<tr>
<th>Offset</th>
<th>Sensor Field</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Temperature</td>
<td>0.1 °C</td>
</tr>
<tr>
<td>1</td>
<td>Humidity</td>
<td>0.1 %</td>
</tr>
<tr>
<td>2</td>
<td>Digital Input</td>
<td>bool</td>
</tr>
<tr>
<td>3</td>
<td>Air Pressure</td>
<td>1 hPa (millibar)</td>
</tr>
<tr>
<td>4</td>
<td>Dew Point</td>
<td>0.1 °C</td>
</tr>
<tr>
<td>5</td>
<td>Dew Point Difference</td>
<td>0.1 °C</td>
</tr>
</tbody>
</table>

For example, the humidity of the second port has the address: $0x100 + 1 \times 8 + 1 = 0x109$

Energy Sensors:

We distinguish the line sensors (which correspond to the input circuits) and the port sensors, which measure the energy that is passed over the switched port. The measured values of the energy sensors are returned as signed 32-bit integers. The high-order 16-bits are starting on the even address, followed by the low-order 16-bits on the odd address. To calculate the address, there are the following formulas (the values for line, port and phase start at zero):

Line: $0x0400 + \text{Line} \times 0x120 + \text{Phase} \times 0x60 + \text{Offset} \times 2$

Port: $0x3a00 + \text{Port} \times 0x120 + \text{Phase} \times 0x60 + \text{Offset} \times 2$

For devices with only one phase, the phase is set to zero in the formula.

Examples:

"Power Active" for 1st line sensor and 3rd phase: $0x400 + 0 \times 0x120 + 2 \times 0x60 + 1 \times 2 = 0x4C2$

"Voltage" for 2nd line sensor and single phase device: $0x400 + 1 \times 0x120 + 2 \times 2 = 0x524$

"Power Angle" for 4th port sensor and single phase device: $0x3a00 + 3 \times 0x120 + 6 \times 2 = 0x3d6c
Specifications

<table>
<thead>
<tr>
<th>Offset</th>
<th>Sensor Field</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Voltage</td>
<td>0.01 V</td>
</tr>
<tr>
<td>1</td>
<td>Current</td>
<td>mA</td>
</tr>
<tr>
<td>4</td>
<td>Frequency</td>
<td>0.01 hz</td>
</tr>
<tr>
<td>5</td>
<td>Power Factor</td>
<td>0.001</td>
</tr>
<tr>
<td>6</td>
<td>Power Angle</td>
<td>0.1 degree</td>
</tr>
<tr>
<td>7</td>
<td>Power Apparent</td>
<td>VA</td>
</tr>
<tr>
<td>8</td>
<td>Power Reactive</td>
<td>VAR</td>
</tr>
<tr>
<td>9</td>
<td>Absolute Active Energy</td>
<td>Wh</td>
</tr>
<tr>
<td>10</td>
<td>Absolute Reactive Energy</td>
<td>VARh</td>
</tr>
<tr>
<td>11</td>
<td>Absolute Reactive Energy</td>
<td>VARh</td>
</tr>
<tr>
<td>12</td>
<td>Reset Time - sec. since last Energy Counter Reset</td>
<td>s</td>
</tr>
<tr>
<td>13</td>
<td>Forward Active Energy</td>
<td>Wh</td>
</tr>
<tr>
<td>14</td>
<td>Forward Reactive Energy</td>
<td>VARh</td>
</tr>
<tr>
<td>15</td>
<td>Forward Active Energy Resettable</td>
<td>Wh</td>
</tr>
<tr>
<td>16</td>
<td>Forward Reactive Energy</td>
<td>VARh</td>
</tr>
<tr>
<td>17</td>
<td>Reverse Active Energy</td>
<td>Wh</td>
</tr>
<tr>
<td>18</td>
<td>Reverse Reactive Energy</td>
<td>VARh</td>
</tr>
<tr>
<td>19</td>
<td>Reverse Active Energy Resettable</td>
<td>Wh</td>
</tr>
<tr>
<td>20</td>
<td>Reverse Reactive Energy</td>
<td>VARh</td>
</tr>
<tr>
<td>21</td>
<td>Residual Current Type A</td>
<td>0.1 mA</td>
</tr>
<tr>
<td>22</td>
<td>Neutral Current</td>
<td>0.1 mA</td>
</tr>
</tbody>
</table>

⚠️ Whether the measured values "Residual Current" and "Neutral Current" are supported depends on the respective device model. For measured values such as "Neutral Current", which are independent of the phase, the same value is returned for all phases.

DC Energy Sensors:

With the EPC 8291 / 8290 devices, the voltage and current of the individual banks and voltage sources can be read out. The measured values of the energy sensors are returned as signed 16-bit integers. The following formulas are available for the address (the values for Bank and PowerSrc start at zero):

- **Bank**: `0x8200 + Bank * 2 + Offset`
- **Power Source**: `0x8240 + PowerSrc * 2 + Offset`

Examples:

- "Voltage" at third bank: `0x8200 + 2 * 2 + 0 = 0x8204`
- "Current" at first PowerSrc: `0x8240 + 0 * 2 + 1 = 0x8241`

DC Energy Sensors Offset

<table>
<thead>
<tr>
<th>Offset</th>
<th>Sensor Field</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Voltage</td>
<td>0.01 V</td>
</tr>
<tr>
<td>1</td>
<td>Current</td>
<td>mA</td>
</tr>
</tbody>
</table>
Devices with a Residual Current Monitor Type B (RCMB) module separately measure the RMS and DC fault current components of the input supply. The values are returned as signed 16-bit integers. The following formulas are used for the address (the module number starts at zero):

Bank: $0x8280 + \text{ModuleNo} \times 8 + \text{Offset}$.

Examples:

"Residual Current DC" at first module: $0x8280 + 0 \times 8 + 1 = 0x8281$.

"Output DC" for second module: $0x8280 + 1 \times 8 + 3 = 0x828b$

<table>
<thead>
<tr>
<th>Offset</th>
<th>Addr. Module 0</th>
<th>Sensor Field</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0x8280</td>
<td>Residual Current RMS Type B</td>
<td>0.1 mA</td>
</tr>
<tr>
<td>1</td>
<td>0x8281</td>
<td>Residual Current DC Type B</td>
<td>0.1 mA</td>
</tr>
<tr>
<td>2</td>
<td>0x8282</td>
<td>Output RMS</td>
<td>bool</td>
</tr>
<tr>
<td>3</td>
<td>0x8283</td>
<td>Output DC</td>
<td>bool</td>
</tr>
<tr>
<td>4</td>
<td>0x8284</td>
<td>Module State</td>
<td></td>
</tr>
</tbody>
</table>

Whether a Residual Current Monitor Type B (RCMB) module is present depends on the particular device model.

Holding Registers

<table>
<thead>
<tr>
<th>Device Resource</th>
<th>Start</th>
<th>End</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bank Power Source</td>
<td>0x000</td>
<td>0x00f</td>
<td>Sets Power Source for Bank</td>
</tr>
<tr>
<td>Fan Mode</td>
<td>0x010</td>
<td>0x01f</td>
<td>$0 = \text{Automatic} / 1 = \text{Maximum}$</td>
</tr>
</tbody>
</table>

Bank Power Source applies to EPC 8291 and ETS 8801 models. Only the EPC 8291 model has a fan.

Device Identification

Returns manufacturer name and device identification:

<table>
<thead>
<tr>
<th>Request Code</th>
<th>1 Byte</th>
<th>0x2b</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEI Type</td>
<td>1 Byte</td>
<td>0x0e</td>
</tr>
<tr>
<td>Read Dev ID code</td>
<td>1 Byte</td>
<td>0x01</td>
</tr>
<tr>
<td>Object Id</td>
<td>1 Byte</td>
<td>0x00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Response Code</th>
<th>1 Byte</th>
<th>0x2b</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEI Type</td>
<td>1 Byte</td>
<td>0x0e</td>
</tr>
<tr>
<td>Read Dev ID code</td>
<td>1 Byte</td>
<td>0x01</td>
</tr>
<tr>
<td>Conformity Level</td>
<td>1 Byte</td>
<td>0x01</td>
</tr>
<tr>
<td>More Follows</td>
<td>1 Byte</td>
<td>0x00</td>
</tr>
<tr>
<td>NextObjectID</td>
<td>1 Byte</td>
<td>0x00</td>
</tr>
<tr>
<td>Number of Objects</td>
<td>1 Byte</td>
<td>0x03</td>
</tr>
<tr>
<td>Object ID</td>
<td>1 Byte</td>
<td>0x00</td>
</tr>
</tbody>
</table>
Specifications

<table>
<thead>
<tr>
<th>Object Length</th>
<th>1 Byte</th>
<th>n1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Object Value</td>
<td>n1 Bytes</td>
<td>"Company Id"</td>
</tr>
<tr>
<td>Object ID</td>
<td>1 Byte</td>
<td>0x00</td>
</tr>
<tr>
<td>Object Length</td>
<td>1 Byte</td>
<td>n2</td>
</tr>
<tr>
<td>Object Value</td>
<td>n2 Bytes</td>
<td>"Product Id"</td>
</tr>
<tr>
<td>Object ID</td>
<td>1 Byte</td>
<td>0x00</td>
</tr>
<tr>
<td>Object Length</td>
<td>1 Byte</td>
<td>n3</td>
</tr>
<tr>
<td>Object Value</td>
<td>n3 Bytes</td>
<td>"Product Version"</td>
</tr>
</tbody>
</table>

4.9.1 Sensor Tables

Important: All calculations in this chapter are based on addresses starting at "0". With some Modbus TCP utilities the addresses start at 1. In this case a 1 must be added to the addresses in this chapter. Please try both possibilities for tests!

External sensors addresses (Input Register)

<table>
<thead>
<tr>
<th>Sensor field</th>
<th>Port 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>0x100</td>
</tr>
<tr>
<td>Humidity</td>
<td>0x101</td>
</tr>
<tr>
<td>Digital input</td>
<td>0x102</td>
</tr>
<tr>
<td>Air Pressure</td>
<td>0x103</td>
</tr>
<tr>
<td>Dew Point</td>
<td>0x104</td>
</tr>
<tr>
<td>Dew Point Difference</td>
<td>0x105</td>
</tr>
</tbody>
</table>

A value of 0x8000 means that no sensor is plugged into the corresponding port or the corresponding field in the sensor is not available.

4.10 MQTT

This device supports MQTT 3.1.1 to send configured messages and also to receive commands. This chapter is general for all Gude devices, some Gude models do not have switchable ports.

- Default port for an unencrypted connection is port 1883.
- Default port for a TLS secured connection is port 8883.
- If the broker allows anonymous login, username and password are arbitrary, but a username must be specified.
- If multiple MQTT clients are connected to a broker, the names of the clients must be different. For this reason, "client_xxxx" is generated as the default name. Here "xxxx" are the last 4 digits of the MAC address.

Message format

The MQTT messages of the device are always sent in JSON format. E.G..

```json
{"type": "portswitch", "idx": 2, "port": "2", "state": 1, "cause": {"id": 2, "txt": "http"}, "ts": 1632}
```
Specifications

This is a switching of the second port to the state on. The source of the switching command is CGI ("http"). The index is always numeric, "port" can also be alphanumeric for devices with multiple banks, e.g. "A2". At the end follows a timestamp ("ts"), which indicates the number of seconds the device is on, or unixtime if the device has synchronized with an NTP server.

MQTT Topic Prefix

The topic prefix for the messages can be set in the MQTT configuration. A default would be e.g. "de/gudesystems/epc/[mac]". Here "[mac]" is a placeholder for the MAC address of the device, another possible placeholder is "[host]", which contains the host name. An example topic for a switching message of the second port would then be:

"de/gudesystems/epc/00:19:32:01:16:41/switch/2".

Executing console commands

The device can be controlled remotely via MQTT using console commands. A list of all commands can be found in the Console chapter. Depending on the topic, the commands are accepted in different formats.

⚠️ As default the execution of commands is not allowed, but must be enabled in the MQTT configuration! ("Permit CLI commands")

Format 1: Command in JSON Syntax

Publish Topic: "de/gudesystems/epc/00:19:32:01:16:41/cmd"
Publish Message: "{"type": "cli", "cmd": "port 2 state set 1", "id": 10}"

Response from device to "de/gudesystems/epc/00:19:32:01:16:41/cmdres" "{"type": "cli", "cmdres": ["OK."], "result": {"num": 0, "hint": "ok"}, "id": 10}".

⚠️ The JSON object "result" returns whether the command was valid. The object "id" in the command is optional and is passed through in the response from the device. The passed number can help to establish a synchronicity between command and response via the broker.

Format 2: Raw Text

Publish Topic: "de/gudesystems/epc/00:19:32:01:16:41/cmd/cli"
Publish Message: "port 2 state set 1".

Response from device to "de/gudesystems/epc/00:19:32:01:16:41/cmdres/cli" "OK."

Format 3: Simplified port switching

Publish Topic: "de/gudesystems/epc/00:19:32:01:16:41/cmd/port/2"
Publish Message: "0" or "1".

Response from device to "de/gudesystems/epc/00:19:32:01:16:41/cmdres/port/2" "0" or "1"
This special form exists only for the port switching commands.

Device Data Summary

In the Device Data Summary the most important data of the device are summarized in a JSON object and sent periodically in a configurable time interval. This summary depends on the properties of the device and the connected sensors, and could look like this:

Topic: en/gudeystems/epc/00:19:32:01:16:41/device/telemetry

Message:

```json
{
  "type": "telemetry",
  "portstates": [{
    "port": "1",
    "name": "Power Port",
    "state": 1
  }, {
    "port": "2",
    "name": "Power Port",
    "state": 0
  }, {
    "port": "3",
    "name": "Power Port",
    "state": 0
  }, {
    "port": "4",
    "name": "Power Port",
    "state": 0
  }],
  "line_in": [{
    "voltage": 242.48,
    "current": 0.000
  }],
  "sensors": [{
    "idx": 1,
    "name": "7105",
    "data": [{
      "field": "temperature",
      "v": 21.1,
      "unit": "deg C"
    }, {
      "field": "humidity",
      "v": 71.9,
      "unit": "%"
    }, {
      "field": "dew_point",
      "v": 15.8,
      "unit": "deg C"
    }, {
      "field": "dew_diff",
      "v": 5.3,
      "unit": "deg C"
    }]
  }],
  "ts": 210520
}
```
4.10.1 Example HiveMQ

What does an MQTT configuration look like using HiveMQ as an example?

Create a free or commercial account at www.hivemq.com and create a new cluster.

In the "Manage Clusters" section, go to "Access Management" and add an MQTT user with name and password.

In the MQTT configuration of the Gude device, transfer the hostname of the HiveMQ broker, as well as username and password. Additionally activate TLS and set the correct port.
Support
Support

5 Support

You will find the latest product software on our website at www.gude.info available for download. If you have further questions about installation or operation of the unit, please contact our support team. Furthermore, we present in our support wiki at www.gude.info/wiki FAQs and configuration examples.

5.1 Data Security

To provide the device with a high level of data security, we recommend the following measures:

- Check that the HTTP password is switched on.
- Set up your own HTTP password.
- Allow access to HTTP via SSL (TLS) only.
- Use TLS 1.3 if possible and avoid TLS 1.1.
- Enable authentication and encryption in SNMPv3.
- Disable SNMP v2 access.
- Enable STARTTLS or SSL in the e-mail configuration.
- Archive configuration files securely, they contain sensitive information.
- In the IP ACL, enter only the devices that require access to HTTP or SNMP.
- Use SSH if possible, since Telnet is not encrypted.
- Set login for telnet or serial console.
- Use MQTT 3.1.1 only with TLS and password.
- Only permit MQTT CLI commands when the broker is trustworthy.
- Modbus TCP is not encrypted, only activate it in a secure environment.
- Activate "Message Authentication" in RADIUS.

When accessed from the Internet

- Use a randomized password with at least 32 characters.
- If possible, place the device behind a firewall.

5.2 HTTP Performance

Access to the Gude devices via the REST API can normally be conducted from one source every second with HTTP. If accessed from multiple sources simultaneously, it is recommended to adjust the poll interval accordingly.

SSL (TLS) performance

The initial setup for an SSL (TLS) connection results in numerous crypto operations at the start of the connection. If an RSA 2048 certificate is used, the delay at the beginning is about 2-3 seconds, with RSA 4096 the connection establishment can take up to 10 seconds. The delays result from a limitation of the math unit in the embedded CPU. We therefore recommend an ECC 256 certificate, which is significantly more performant to calculate. Previously established connections TLS connections are stored in a TLS Session Cache (or Session Tickets). However, this cache is not always supported by
browsers, or it expires after only a short time. Especially browsers (HTTPS clients) of other embedded devices (e.g. media controllers) may be limited in the TLS cache.

A remedy for this can be an HTTP keep-alive connection. Once a connection with HTTP keep-alive is opened, it is closed again after 10 seconds if no data is transferred. If you want to receive data periodically, it is therefore recommended to request the data at intervals of less than 10 seconds (e.g. every 5-8 seconds) after establishing the connection with HTTP keep-alive.

Special TLS 1.3 performance problem with Chrome (MS Edge)

When TLS 1.3 and insecure certificates are used in combination with a web browser with Chromium engine (Google Chrome or MS Edge), performance may be affected, resulting in longer loading times. In this constellation, the Chromium Engine does not correctly support the TLS Session Cache (or Session Tickets) and the math unit of the embedded CPU may be overwhelmed with persistent RSA operations. Possible solutions:

- Use secure certificates (official certificate authority or marked as secure in the OS)
- or keep-alive with poll interval less than 10 seconds
- or use of Firefox browser
- or use ECC 256 (no RSA) certificates
- or configure to "TLS v1.2 only"

5.3 Contact

GUDE Systems GmbH
Von-der-Wettern-Straße 23
51149 Cologne
Germany

Phone: +49-221-912 90 97
Fax: +49-221-912 90 98
E-Mail: mail@gude.info
Internet: www.gude.info

Managing Director: Dr.-Ing. Michael Gude

District Court: Köln, HRB-Nr. 17 7 84
WEEE-number: DE 58173350
Value added tax identification number (VAT): DE 122778228

5.4 Declaration of Conformity

This product from the **Expert Net Control 2302** series is in conformity with the European directives for CE marking applicable to this product. The complete CE declaration of conformity for this product can be found on the website www.gude.info in the download section of the product.
5.5 FAQ

1. What can I do if the device is no longer accessible?

- If the Status LED is red, the device has no connection to the switch. Unplug and plug the Ethernet cable. If the Status LED is still red, try other switches. If one uses no switch, but connects e.g. a laptop directly to the device, make sure you are using a crossover Ethernet cable.
- If the status LED is orange for a longer time after unplugging and plugging the Ethernet cable, then DHCP is configured, but no DHCP server was found in the network. After a timeout, the last IP address is configured manually.
- If there is a physical link (status LED is green) to the device, but you can not access the web server, bring the device into bootloader mode and search for it with GBL_Conf.exe. Then check the TCP-IP parameters and change them if necessary.
- If the device is not found by GBL_Conf.exe in bootloader mode, you can reset the settings to factory defaults as the last option.

Why is a device sporadically no longer accessible when DHCP is activated?

- If DHCP is activated but no DHCP server can be reached, the last IP-address continues to be used. However, the DHCP client tries to reach a DHCP server again every 5 minutes. The DHCP request lasts one minute until it is aborted. During this time the IP-address is not accessible! It is therefore essential to deactivate DHCP for a static IP addresses!

3. What can be done if the device is no longer accessible, but the buttons still respond?

- Entering or leaving the bootloader mode does not change the state of the relays. In the chapter Maintenance there is a description how to activate the bootloader by pressing the buttons and how to exit the bootloader afterwards. This will restart the firmware without switching relays. However, this procedure does not help if the network itself is incorrectly configured.

4. Where is the serial number stored in the device?

The serial number is not stored in the device, but only visible on the device label. However, you can display the MAC address in the IP address configuration. If you contact Gude Systems Support with the MAC address, we will be happy to give you the corresponding serial number.

5. Why does it sometimes take so long to configure new SNMPv3 passwords on the website?

The authentication methods “SHA-384” and “SHA-512” are calculated purely in software, and can not use the crypto hardware. On the configuration page, e.g. “SHA-512”, needs up to 45 seconds to calculate the key.
6. Can you enter multiple e-mail recipients?

- Yes. In the E-Mail configuration in the **Recipient Address** field, it is possible to enter multiple e-mail addresses separated by commas. The input limit is 100 characters.

7. Why did the MIB tables change after the firmware update?

- Since the number of possible event types was increased, the previous trap design resulted in an excess of trap definitions: See Change in Trap Design.

8. Importing an older firmware

- During a firmware update, old data formats are sometimes converted to new structures. If an older firmware is newly installed, the configuration data and the energy meters may be lost! If the device then does not run correctly, please restore the factory settings (e.g. from the Maintenance Page).

9. Disable switching events

- You can set the sending of syslog, emails etc. when switching ports (only concerns Gude devices with relays) under "System" in the sensor configuration.
Index

- A -
 automated Access 54

- B -
 Bootloader Mode 16, 21
 Button Lock 52

- C -
 Certificate-Upload 16, 19
 clear DNS-Cache 19
 Configuration Management 20
 Content of Delivery 6
 creating certificates 62

- D -
 Data Security 89
 Declaration of Conformity 90
 Default Display 52
 Description 6
 device MIB 61

- E -
 E-Mail 51
 Ethernet connnector 8

- F -
 Factory Reset 16
 FAQ 91
 Firmware Upload 16
 Firmware-Update 19

- G -
 GBL_Conf.exe 16

- H -
 HTTP 32
 HTTP Performance 89
 HTTPS 32

- I -
 Installation 8
 IP-ACL 30, 56
 IP-Address 29
 IPv6 57

- L -
 load Configuration 19

- M -
 Maintenance 16
 messages 54
 Modbus TCP 78
 MQTT 40, 84

- N -
 NTP 41

- O -
 Ok button 8
 Operating the device directly 14

- P -
 Power Ports 25

- R -
 Radius 57
 Restart 19

- S -
 Security Advice 6
 Select button 8
 Sensors 11, 49
 SNMP 36, 58
 SSH 68
 SSL 62
 Start-up the device 8
 Status LED 8
 Status-LED 14
 syslog 35
Index

- T -
 Technical Specifications 10
 Timer 42
 Timer Configuration 42
 TLS 62

- W -
 Watchdog 26